期刊文献+

Microstructure measurement based on frequency-shift feedback in a-cut Nd:YVO_4 laser 被引量:4

Microstructure measurement based on frequency-shift feedback in a-cut Nd:YVO_4 laser
原文传递
导出
摘要 A new optical method based on frequency-shift feedback and laser confocal microscopy is presented to noninvasively measure a microstructure inside a sample. Due to the limit of axial resolution caused by poor signal detection ability, conventional laser feedback cannot precisely measure the microstructure. In this Letter, the light scattered by the sample is frequency shifted before feedback to the laser to obtain a magnification. Weak signals that change with the microstructure can be detected. Together with the tomography ability of laser confocal microscopy, the inner microstructure can be measured with high axial resolution. & A new optical method based on frequency-shift feedback and laser confocal microscopy is presented to noninvasively measure a microstructure inside a sample. Due to the limit of axial resolution caused by poor signal detection ability, conventional laser feedback cannot precisely measure the microstructure. In this Letter, the light scattered by the sample is frequency shifted before feedback to the laser to obtain a magnification. Weak signals that change with the microstructure can be detected. Together with the tomography ability of laser confocal microscopy, the inner microstructure can be measured with high axial resolution. &
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第12期27-31,共5页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.51375262) the Natural Science Foundation of Beijing(No.4152024)
关键词 Confocal microscopy Frequency shift keying MICROSTRUCTURE Confocal microscopy Frequency shift keying Microstructure
  • 相关文献

参考文献20

  • 1A. Wennerberg, R. Ohlsson, B.-G. Rosen, and B. Andersson, Med. Eng. Phys. 18, 548 (1996).
  • 2B.-G. Rosen, L. Blunt, and T. R. Thomas, Proc. J. Phys.: Conf. Ser.13, 325 (2005).
  • 3L. Zhang, T. Sakai, N. Sakuma, T. Ono, and K. Nakayama, Appl. Phys. Lett. 75, 3527 (1999).
  • 4V. Kalinin Sergei and A. Gruverman, Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer Science and Business Media, 2007).
  • 5J. Schmit and P. Hariharan, Opt. Eng. 46, 077007 (2007).
  • 6K. Verma and B. Han, J. Electron. Packag. 122, 227 (2000).
  • 7S. Kino Gordon and S. C. Chim Stanley, Appl. Opt. 29, 3775 (1990).
  • 8S. Lee and L. Li, Opt. Commun. 334, 253 (2015).
  • 9Q. Hu, J. Wang, Z. Fu, X. Mo, X. Ding, L. Xia, Y. Zhang, and Y. Sun, Appl. Microbiol. Biotechnol. 99, 5605 (2015).
  • 10J. Hong, W. Guan, G. Jin, H. Zhao, X. Jiang, and J. Dai, Microbiol. Res. 170, 69 (2015).

同被引文献32

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部