期刊文献+

有限混合非对称Laplace分布的渐近分布

The asymptotic distribution of finite mixture asymmetric Laplace distribution
下载PDF
导出
摘要 设{Z_n,n≥1)是独立同分布的随机变量序列并且共同的分布函数是混合非对称Laplace分布.M_n=max{Z_1,Z_2,…,Z_n}表示{X_n,n≥1)的部分最大值.W_n=min{Z_1,Z_2,…,Z_n}表示部分最小值.作者主要研究同服从混合非对称Laplace分布的独立随机变量序列最大值和最小值的分布的渐近分布以及相应的赋范常数. Let {Zn,n≥1} be an independent and identically distributed random sequence with common distribution Fobeying mixture asymmetric Laplace distribution. M. = max {Z1,Z2,…,Zn}denotes partial maximum. {X,n≥1} denotes partial minimum. In this pa- per, the asymptotic distribution of distribution of the maximum and minimum of independent identically distributed random variable se- quence with mixture asymmetric Laplace distribution and associated normalizing constants are studied.
出处 《遵义师范学院学报》 2015年第6期90-92,共3页 Journal of Zunyi Normal University
基金 国家自然科学基金资助项目(NO.71461027) 贵州省自然科学基金资助项目(黔科合J字LKZS[2014]22号 黔科合J字LKZS[2014]29号)
关键词 非对称LAPLACE分布 混合分布 渐近分布 赋范常数 asymmetric Laplace distribution mixed distribution asymptotic distribution normalizing constants
  • 相关文献

参考文献8

  • 1Nelson D B.Conditional heteroskedasticity in asset returns: A new approach [J].Econometrica, 1991,59(2): 347-370.
  • 2Mladenovic P.Extreme Values of the Sequences of Indepen- dent Random Variables with Mixed Distributions[J]. Matem- aticki Vesnik, 1999,51 (1-2):29-37.
  • 3程琼,彭作祥.混合分布最大值的极限分布(英文)[J].西南大学学报(自然科学版),2011,33(1):5-10. 被引量:3
  • 4Jayakumar K,Kuttykrishnan A P.A time-series model using asymmetric Laplace distribution[J].Statistics and Probability Letters. 2007,77(16): 1636-1640.
  • 5Johnson N L,Kotz S,Balakrishnan N.Continuous Univariate Distributions[M]. New York:John Wily and Sons, 1995.
  • 6Kozubowski T J,Podgorski K.A class of asymmetric distribu tions[J].Actuarial Research Clearing house, 1999,(1 ): 113 - 134.
  • 7Resnick S I.Extreme value,Regular Variation,and Point Pro- cesses[M].New York: Springer-Verlag, 1987.
  • 8Galambos J.The Asypmtotic Theory of Extreme Order Stat- istics[M].New York: Wiley, 1987.

二级参考文献11

  • 1YANG M H, AHUJA N. Gaussian Mixture Model for Human Skin Color and Its Applications in Image and Video Data bases [CJ //Proc SPIE. San Jose: SPIE, 1998.
  • 2R(-)EDER K. A Graphical Technique for Determining the Number of Components in a Mixture of Normals [J]. Journalof the American Statistical Association, 1994, 89(426): 487 -495.
  • 3LINDSAY B G. Mixture Models: Theory, Geometry and Applications [M]. Hayward.. Institute of Mathematical Statis- tics, 1995: 127--156.
  • 4CHENG J H, LIP F. Hypothesis Test for Normal Mixture Models: the EM Approach EJ3. The Annals of Statistics, 2009, 37(5A) : 2523 - 2542.
  • 5FIGUEIREDO A T, JAIN A K. Unsupervised Learning of Finite Mixture Models [J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2002, 24(3): 381 -396.
  • 6NOBILE A. Byesian Analysis of Finite Mixture Distributions EM~. Princeton: Citeseer, 1994:7 - 11.
  • 7PEEL D, MCLACHLAN G J. A Mixture Model-Based Approach to the Clustering of Microarray Expression Data [J]. Bioinformatics, 2002, 18(3): 413-422.
  • 8VENTURINI S, DOMINICI F, PARMIGIANI G. Gamma Shape Mixtures for Heavy-Tailed Distributions [-J~. The An- nals of Applied Statistics, 2008, 2(2): 756- 776.
  • 9MLADENOVIC P. Extreme Values of the Sequences of Independent Random Variables with Mixed Distributions [-J~. Matematicki Vesnik, 1999, 51(1 - 2): 29 -37.
  • 10LEADBETTER M R, LINDGREN G, ROOTZIN H. Extremes and Related Properties of Random Sequences and Processes EM~. Berlin~ Springer-Verlag, I983:113- 129.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部