期刊文献+

一种改进的Condensation人脸特征点跟踪算法 被引量:2

AN IMPROVED CONDENSATION FACIAL FEATURE POINT TRACKING ALGORITHM
下载PDF
导出
摘要 Condensation跟踪算法只能完成一些简单的目标跟踪。由于人脸容易出现被遮挡,姿态和表情也经常发生变化,导致人脸特征点极易跟踪失败。针对这些复杂变化,提出一种改进的Condensation人脸特征点跟踪算法。该算法对跟踪的特征点利用增量PCA方法实现特征基和均值的在线更新,同时,加入一个遗忘因子,使得在新样本的更新过程中,考虑了旧样本的存在,更新了均值。实验证明,该算法可以有效地克服复杂变化带来的影响,实现了人脸特征点的准确跟踪。 Condensation tracking algorithm can only complete some simple target tracking. As the faces are prone to be occluded,and gestures and facial expressions are often changing as well,these results in easily failing in facial features points tracking. For those complex changes,we propose an improved Condensation facial feature point tracking algorithm. It uses incremental PCA method on the feature points tracked to achieve online updating of eigenbasis and mean. Meanwhile,a forgetting factor is added which considers the existence of the old sample and updates the mean when a new sample is appeared in updating process. Experimental results show that the algorithm can effectively overcome the impact of complex changes and achieves accurate tracking on facial feature points.
作者 徐岩柏
出处 《计算机应用与软件》 CSCD 2015年第12期154-159,213,共7页 Computer Applications and Software
关键词 人脸特征点跟踪 增量PCA更新 CONDENSATION 遗忘因子 Facial feature point tracking Incremental PCA update Condensation Forgetting factor
  • 相关文献

参考文献29

  • 1Ong E J,Bowden R.Robust facial feature tracking using shape-constrained multiresolution-selected linear predictors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(9):1844-1859.
  • 2Yao A B.A compact association of particle filtering and kernel based object tracking[J].Pattern Recognition,2012,45(7):2584-2597.
  • 3邱丽梅,李青虹.基于KLT和BFGS的人脸姿态估计[J].计算机工程,2011,37(6):181-183. 被引量:1
  • 4程远航.基于光流法的视频人脸特征点跟踪方法[J].计算机与现代化,2010(7):120-122. 被引量:4
  • 5程远航.基于光流和Gabor小波的人脸特征点跟踪[J].计算机仿真,2011,28(5):287-290. 被引量:3
  • 6Kim T,Lee S,Paik J.Combined shape and feature-based video analysis and its application to non-rigid object tracking[J].IEEE Transactions on Image Processing,2011,5(1):87-100.
  • 7Babenko B,Yang M H,Belongie S.Robust object tracking with online multiple instances learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.
  • 8Wang X,Wang Y,Feng X,et al.On edge structure based adaptive observation model for facial feature tracking[C]//19th International Conference on Pattern Recognition,IEEE,2011:1-4.
  • 9Baker Lepain J C,Luker K R,Lynch J A,et al.Active shape modeling of the hip in the prediction of incident hip fracture[J].Journal of Bone and Mineral Research,2011,26(3):468-474.
  • 10Cui Y,Jin Z.Facial Feature Points Tracking Based on AAM with Optical Flow Constrained Initialization[J].Journal of Pattern Recognition Research,2012,7(1):72-79.

二级参考文献90

  • 1宋刚,艾海舟,徐光祐.纹理约束下的人脸特征点跟踪[J].软件学报,2004,15(11):1607-1615. 被引量:15
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3梁国远,查红彬,刘宏.基于三维模型和仿射对应原理的人脸姿态估计方法[J].计算机学报,2005,28(5):792-800. 被引量:25
  • 4Shin Jeongho,Kim Sangjin,Kang Sangkyu,et al.Optical flow-based real-time object tracking using non-prior training active feature mode[J].Elsevier Real-Time Imaging,2005,11(3):204-218.
  • 5Basu S,Essa I,Pentland A.Motion regularization for model based head tracking[C]//Proceedings of the 13th ICPR.1996:611-616.
  • 6Zhang Y,Kambhamettu C.3D head tracking under partial occlusion[J].Pattern Recognition,2002,35(7):1545-1557.
  • 7Yuille A L:Deformable templates for face detection[J].J.Cogn.Neurosci.,1991,3(1):59-70.
  • 8M J Black, Y Yaeoob. Recognising Facial Expressions in Image Sequences Using Local Parameterised Models of Image Motion[ J]. Journal of Computer Vision, 1997,25 ( 1 ) :23-48.
  • 9J F Cohn, A J Zlochower, J J Lien, T Kanade. Feature-Point Tracking by Optical Flow Discriminates Subtle Differences in Fa- cial Expression[ C]. Proc. 3rd IEEE FG,1998,39-401.
  • 10L Wiskott, J M Fellous, N Kruger. Face Recognition by Elastic Bunch Graph Matching[ C]. 7^th International Conference On Com- puter Analysis of Images and Patterns, 1997.

共引文献37

同被引文献19

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2Tomoyuki Suzuki. Challenges of Image-Sensor Develop- ment[C]. IEEE International Solid-State Circuits Con- ference, San Francisco, February,2010:27-30.
  • 3H. X. Yang, L. Shao, F. Zheng. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011.74(6):3823-383.
  • 4R.J Vogelstein, U. MaUik, G. Cauwenberghs. Beyond address-event communication: dynamically reconfigurable spiking neural systems[J].The Neuromorphic Engineering, 2004.1(1):1-12.
  • 5S. D. Liu, T. Delbruck. Neuromorphic sensory systems[J]. Current Opinion in Neurobiology,2010.20(3):288-295.
  • 6Ahmed Nabil Belbachir, Michael Hofst,itter, Martin Litzenberger, Peter Sch~n. High-Speed Embedded-Object Analysis Using a Dual-Line Timed-Address-Event Temporal-Contrast Vision Sensor[J]. IEEE Transactions On Industrial Electronics,2011.58(3):770-782.
  • 7M. Litzenberger, C. Posch, D. Bauer ,et al. Embedded Vision System for Real-Time Object Tracking using an Asynchronous Transient Vision Sensor[C]. Digital Signal Processing Workshop, 12th-Signal Processing Education Workshop, 4th, Sept,2006:173-178.
  • 8吴孟俊,付钿,刘建平,牛玉刚.基于动态贝叶斯网络的多特征目标跟踪[J].计算机工程与应用,2011,47(30):183-187. 被引量:3
  • 9顾幸方,茅耀斌,李秋洁.基于Mean Shift的视觉目标跟踪算法综述[J].计算机科学,2012,39(12):16-24. 被引量:31
  • 10于璐,姚素英,徐江涛.一种基于地址-事件表达的实时视觉传感器实现方法[J].光学学报,2013,33(1):251-257. 被引量:4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部