期刊文献+

耦合光度配准的双边全变差正则化MAP超分辨率重建算法

BILATERAL TOTAL VARIATION REGULARISED MAP SUPER-RESOLUTION RECONSTRUCTION ALGORITHM WITH COUPLING PHOTOMETRIC REGISTRATION
下载PDF
导出
摘要 针对曝光量不同的序列图像超分辨率重建问题,提出一种耦合光度配准的双边全变差正则化MAP超分辨率重建算法。首先计算感兴趣区域图像的方向梯度直方图(HOG)并以此为匹配的特征,其次采用直方图匹配的方法估算序列图像之间的光度映射函数,最后采用双边全变差正则化的超分辨率重建算法进行重建。通过计算重建图像的平均梯度、标准差及图像对比度发现,该算法能够有效提高重建图像的细节信息,并能有效减小重建图像间的亮度差异,提高图像对比度。 In order to realise super-resolution reconstruction of the sequence images with different exposure times,we proposed a bilateral total variation regularised MAP super-resolution reconstruction algorithm with coupling photometric registration. First,it calculates the histogram of oriented gradients( HOG) of the images in interested regions and uses it as the matching features. Secondly,it employs histogram matching method to estimate the photometric mapping function between images. Finally,it uses bilateral total variation regularised super-resolution reconstruction algorithm to accomplish the reconstruction. It is found by calculating the average gradient,standard deviation and image contrast of the reconstructed images that this algorithm is able to improve the detailed information of the reconstructed images effectively,and can reduce the difference in brightness between the reconstructed images and raise the contrast of images effectively as well.
出处 《计算机应用与软件》 CSCD 2015年第12期188-192,共5页 Computer Applications and Software
基金 国家科技部科技支撑计划项目(2011BAK15B07) 泰州市科技发展计划项目(2011075)
关键词 光度配准 正则化 最大后验概率 超分辨率重建 Photometric registration Regularised Maximum a posteriori probability(MAP) Super-resolution reconstruction
  • 相关文献

参考文献14

  • 1Maiseli B,Wu C,Mei J,et al.A robust super-resolution method with improved high-frequency components estimation and aliasing correction capabilities[J].Journal of the Franklin Institute,2014,351(1):513-527.
  • 2Villena S,Vega M,Babacan S D,et al.Bayesian combination of sparse and non-sparse priors in image super resolution[J].Digital Signal Processing,2013,23(2):530-541.
  • 3Mesarovic V Z,Galatsanos N P,Katsaggelos A K.Regularized constrained total least squares image restoration[J].IEEE Transaction on Image Processing,2009,4(8):1096-1108.
  • 4Zhou Weifeng,Li Qingguo.Adaptive total variation regularization based scheme for Poisson noise removal[J].Mathematical Methods in the Applied Sciences,2013,36(3):290-299.
  • 5Farsiu S,Elad Michael,Milanfar P.Fast and robust multi-frame super resolution[J].IEEE Transaction on Image Processing,2004,13(10):1327-1343.
  • 6Protter M,Elad M,Takeda H,et al.Generalizing the nonlocal-means to super resolution reconstruction[J].IEEE Transaction on Image Processing,2009,18(1):36-51.
  • 7张新明,沈兰荪.基于多尺度边缘保持正则化的超分辨率复原[J].软件学报,2003,14(6):1075-1081. 被引量:29
  • 8Salem Faisal,Andrew E Yagle.Non-Parametric Super-Resolution Using a Bi-Sensor Camera.Multimedia[J].IEEE Transactions,2013,15(1):27-40.
  • 9曹治国,吴博.采用HOG特征的下视景象匹配算法[J].红外与激光工程,2012,41(2):513-516. 被引量:9
  • 10Navneet Dalal,Bill Triggs.Histogram of oriented gradients for human detection[C]//International Conference on Computer Vision and Pattern Recognition,2005,2:886-893.

二级参考文献38

  • 1Li Hui,Manjunath B S,Mitra S K.Opticalto-SAR image registration using the active contour model[C]//In27thAsilomar Conference on Signals,Systems and Computers,1993:568-572.
  • 2Inglada J,Adragna F.Automatic multi-sensor imgage registration by edge matching using genetic algorithms[C]//IEEE Trans International Geoscience and Remote Sensing symposium,IGARSS,2001,5:2313-2315.
  • 3Navneet Dalal,Bill Triggs.Histogram of oriented gradients for human detection[C]//International Conference on Computer Vision and Pattern Recognition,2005,2:886-893.
  • 4Sim D G,Kwon O K,Park R H.Object matching usingrobust Hausdorff distance measures[C]//IEEE Trans Image Process,1999,8(2):425-429.
  • 5Suard F,Rakotomamonjy A,Bensrhair A,et al.Pedestrian detection using infrared images and histograms of oriented gradients[C]//InIntelligent Vehicles Symposium2006,2006:206-212.
  • 6Duda R O,Hart P E,Stork D G.Pattern Classification,Second Edition[M].Beijing:China Machine Press&Citic Publishing House,2003,9:153-154.
  • 7Canny,John.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,6:679-698.
  • 8Ur H, Gross D. Improved resolution from sub-pixel shifted pictures. CVGIP: Graph. Models Image Processing, 1992,54(2): 181-186.
  • 9Kim S, Su WY. Recursive high-resolution reconstruction of blurred multi-frame images. IEEE Transactions on Image Processing,1993,2(4):534-539.
  • 10Shah NR, Zakhor A. Resolution enhancement of color video sequences. IEEE Transactions on Image Processing, 1999,8(6):879-885.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部