期刊文献+

基于HOG算子的手型特征提取算法 被引量:3

HAND-SHAPE FEATURE EXTRACTION ALGORITHM BASED ON HOG
下载PDF
导出
摘要 手型是动态手势的一个重要特征。已有的动态手势识别方法虽利用了手型信息,但是信息都隐含在数据中。对此提出一种动态手势中手型特征的提取算法。该算法能准确识别出动态手势中的手型特征。通过Kinect获取手部位置数据,计算手势样本的手局部图像的HOG(Histogram of Oriented Gradient)算子,通过统计手势过程中,临近帧的手局部图像的HOG算子的相似性,确定该样本的手型特征所在帧。实验结果显示,其手型特征识别平均正确率达到92.78%。 Hand-shape is an important feature of dynamic gestures. Though existing dynamic gesture recognition methods make use of the hand-type information,the information is hided in the data. We propose a new extraction algorithm for hand-shape feature in dynamic gestures,which can accurately recognise the hand-shape feature in dynamic gestures. It gets hand position data with Kinect,and calculates the HOG operator of partial hand image of gestures sample. The frame where the hand-shape feature of the gestures sample is found can be determined through the similarity of the HOG operators of the partial hand image in near frames in the process of counting the hand-shapes.Experiments show that average correct rate of hand-shape feature recognition achieves 92. 78%.
出处 《计算机应用与软件》 CSCD 2015年第12期326-329,共4页 Computer Applications and Software
基金 江苏省自然科学基金项目(BK2010192)
关键词 手势识别 特征手型 HOG Gesture recognition Hand-shape feature HOG
  • 相关文献

参考文献14

  • 1Nazll Ikizler,David Forsyth.Searching video for complex activities with finite state models[C]//Computer Vision and Pattern Recognition,2007.CVPR’07.IEEE Conference on,2007:1-8.
  • 2Suk H I,Sin B K,Lee S W.Hand gesture recognition based on dynamic bayesian network framework.Pattern Recognition[J].2010,43(9):3059-3072.
  • 3Roh M C A,Lee S W.Semi-Dynamic Bayesian Network for human gesture recognition[C]//International Conference on Systems,Man and Cybernetics(SMC).USA:IEEE,2008:644-649.
  • 4Y Ruiduo,S Sarkar,Loeding B.Enhanced level building algorithm for the movement epenthesis problem in sign language recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007:1-8.
  • 5黄国范,程小平.基于历史的动态手势识别[J].西南大学学报(自然科学版),2009,31(1):106-110. 被引量:8
  • 6Mahbub U,Imtiaz H,Roy T,et al.A template matching approach of one-shot-learning gesture recognition[J].Pattern Recognition Letters,2013,34(15):1780-1788.
  • 7Wan J,Ruan Q,Li W,et al.One-shot learning gesture recognition from RGB-D data using bag of features[J].The Journal of Machine Learning Research,2013,14(1):2549-2582.
  • 8Chung H,Yang H D.Conditional random field-based gesture recognition with depth information[J].Optical Engineering,2013,52(1):017201.
  • 9Yao Y,Li C T.A Framework for Real-Time Hand Gesture Recognition in Uncontrolled Environments with Partition Matrix Model Based on Hidden Conditional Random Fields[C]//Systems,Man,and Cybernetics(SMC),IEEE International Conference on,2013:1205-1210.
  • 10Tan W J,Wu C D,Zhao S Y,et al.Dynamic Hand Gesture Recognition Using Motion Trajectories and Key Frames[C]//International Conference on Advanced Computer Control,2010(3):163-167.

二级参考文献3

共引文献7

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部