期刊文献+

基于改进BP网络的冷水机组故障诊断 被引量:22

Research on Fault Diagnosis of Chillers Based on Improved BP Network
下载PDF
导出
摘要 采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,对神经网络进行贝叶斯正则化,从而提高模型的检测效率。贝叶斯算法通过限制神经网络权值,使网络反应更加光滑,模型更精确。通过利用ASHRAE Project提供的数据对FDD(fault detection and diagnosis)策略进行验证,检测率明显提高。 The overall detection rate using conventional neural networks to detect and diagnose the chillers' fault is low,even this method can't detect the fault completely. In order to improve the fault detection and diagnostic accuracy of chiller,an improved neural network fault detection strategy based on Bayesian regularization is proposed. Due to the defects of poor generalization ability of BP neural network,the neural network based on Bayesian regularization can improve the detection efficiency of the model. Bayesian algorithm by limiting the weights of the neural network makes the network more smooth,which make the model more precise. Validation of FDD( fault detection and diagnosis) strategy through using ASHRAE Project data shows that the detection rate is improved obviously.
出处 《制冷学报》 CAS CSCD 北大核心 2015年第6期34-39,共6页 Journal of Refrigeration
基金 国家自然科学基金项目(51328602) 2013年压缩机技术国家重点实验室开放基金项目(230031) 供热供燃气通风及空调工程北京市重点实验室研究基金资助课题(NR2016K02)项目资助~~
关键词 冷水机组 故障检测与诊断 神经网络 贝叶斯正则化 chiller fault detection and diagnosis BP neural network bayesian regularization
  • 相关文献

参考文献15

  • 1江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):30-40. 被引量:611
  • 2胡云鹏,陈焕新,周诚,徐荣吉.基于小波去噪的冷水机组传感器故障检测[J].华中科技大学学报(自然科学版),2013,41(3):16-19. 被引量:21
  • 3Hu Y P, Chen H X, Xie J L, et al. Chiller sensor fault detection using a self-adaptive principal component analysis method[J]. Energy and Building, 2012, 54: 252-258.
  • 4李冠男,胡云鹏,陈焕新,黎浩荣,李炅,胡文举.基于SVDD的冷水机组传感器故障检测及效率分析[J].化工学报,2015,66(5):1815-1820. 被引量:26
  • 5Zhao Y, Wang S W, Xiao F. Pattern recognition based chillers fault detection method using support vector data de- scription (SVDD) [ J]. Applied Energy, 2013, 112: 1041-1045.
  • 6谷波,韩华,洪迎春,康嘉.基于SVM的制冷系统多故障并发检测与诊断[J].化工学报,2011,62(S2):112-119. 被引量:10
  • 7Sim J J, Tan G W H, Wong J C J, et al. Understanding and predicting the motivators of mobile music acceptance- A multi-stage MRA-artificial neural network approach[ J]. Telematics and Informatics, 2014, 31 (4) : 569-584.
  • 8Jiang W, Lu J. Frequency estimation in wind farm integrat- ed systems using artificial neural network[ J]. International Journal of Electrical Power & Energy Systems, 2014, 62 : 72-79.
  • 9康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005..
  • 10Du Z, Jin X, Yang Y. Wavelet neural network-based fault diagnosis in air-handling units [ J ]. HVAC & Research, 2008, 14 (6) : 959-973.

二级参考文献121

共引文献974

同被引文献213

引证文献22

二级引证文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部