摘要
砂轮外形、加工轨迹、运动轴组合方式、工件摆放方式等的差异都会引起曲面磨削加工模型的变化,加工几何模型是实施曲面磨削首要解决的问题。建立盘形圆弧砂轮的几何模型,通过磨削点法向量匹配,建立工件点和砂轮点的一一映射关系,经过坐标变换可以得到相应的刀具运动轨迹,用于磨削加工。形成统一的盘形砂轮曲面磨削几何模型,并给出刀具运动轨迹的计算流程。该磨削模型适用范围广,有效解决了多种曲面磨削过程的刀具轨迹生成问题,实现了高精度的曲面磨削加工。
The differences of wheel shape, machining path, motion axis combinations, and workpiece placed posture, will cause alterations of grinding model, which is the primary problem for the solution to curve generation. A geometric model of disk arc wheel was established ; a one-to- one mapping relationship was built between workpiece and grinding wheel through the grinding point normal vector matching. After coordinate transformation, the corresponding machining tool motion trail which can be used for grinding was obtained. The uniform grinding geometry model of curve surface was formed, and the calculating flow of tool path was developed. The model has a wide application range, and can solve the tool path generating problem of multiple type grinding processes, which guarantees a high precision curve surface grinding.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2015年第6期39-42,共4页
Journal of National University of Defense Technology
基金
国家重点基础研究发展计划资助项目(2011CB013204)
关键词
曲面磨削
磨削几何模型
砂轮模型
法向量匹配
curve surface grinding
grinding geometric model
geometric model of wheel
normal vector matching