期刊文献+

幂零-雅可比方法的一个应用

An application of Nilpotent-Jacobian method
下载PDF
导出
摘要 为丰富谱任意符号模式矩阵类,本文给出了两个新的含有3n个非零元的复符号模式矩阵,运用中值定理来实现幂零,并扩展了幂零-雅可比方法,证明了两个复符号模式矩阵是极小谱任意的。 To enrich the spectralty arbitrary pattern matrix class, we present two new complex sign pattern matrix with nonzero entries. We implement nilpotent with intermediate value theorem. We also extend Nilpotent-Jacobian method and 3n prove two complex sign pattern matrix are minimally spectrally arbitrary.
出处 《山东科学》 CAS 2015年第6期111-115,126,共6页 Shandong Science
基金 国家自然科学基金(11071227) 山西省回国留学人员科研资助项目(12-070)
关键词 幂零-雅可比 复符号模式 谱任意 蕴含幂零 Nilpotent-Jacobian method complex sign pattern spectrally arbitrary pattern potentially nilpotent
  • 相关文献

参考文献7

  • 1DREW J H, JOHNSON C R, OLESKY D D, et al. Spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2000, 308(1/2/3) : 121 - 137.
  • 2BRITZ T, MCDONALD J J, OLESKY D D, et al. Minimally spectrally arbitrary sign patterns [J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26( 1 ) : 257 -271.
  • 3MCDONALD J J, OLESKY D D, TSATSOMEROS M J, et al. On the spectra of striped sign patterns[J]. Linear and Muhilinear Algebra, 2002, 51 ( 1 ) : 39 -48.
  • 4CAVERS M S, VANDER MEULEN K N. Spectrally and inertially arbitrary sign patterns [J]. Linear Algebra and its Applications, 2005, 394 : 53 - 72.
  • 5高玉斌,邵燕灵.谱任意的符号模式矩阵(英文)[J].数学进展,2006,35(5):551-555. 被引量:14
  • 6MCDONALD J J, STUART J. Spectrally arbitrary ray patterns [J]. Linear Algebra and its Applications, 2008, 429(4) : 727 -734.
  • 7GAO Y B, SHAO Y L , Fan Y Z. Spectrally arbitrary complex sign pattern matrices[J]. Electronic Journal of Linear Algebra, 2009, 18 : 674 - 692.

二级参考文献4

  • 1Drew,J.H.,Johnson,C.R.,Olesky,D.D.and van den Driessche,P.,Spectrally arbitrary patterns,Linear Algebra Appl.,2000,308:121-137.
  • 2Gao Yubin and Shao Yanling,Inertially arbitrary patterns,Linear and Multilinear Algebra,2001,49(2):161-168.
  • 3Brualdi,R.A.and Shader,B.L.,Matrices of Sign-solvable Linear Systems,Cambridge:Cambridge University Press,1995.
  • 4Horn,R.A.and Johnson,C.R.,Matrix Analysis,Cambridge:Cambridge University Press,1985.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部