期刊文献+

高压水射流靶物反射声分解与重构方法研究

Research on reflected sound decomposition and reconstruction method for high pressure water jet target
原文传递
导出
摘要 为了解决线性传声器阵列采集的高压水射流反射声解耦、重构和定位问题,以传统独立成分分析(ICA)理论的旋转因子乘积法为基础,构建了一种迭代式ICA方法,介绍了其算法原理.设计了线性阵列排列的多通道水射流探测与反射声采集系统进行实验,用多路仿真声音信号和传声器阵列实际采集的反射声信号进行算法验证.结果表明:构建的迭代式ICA方法能够精确分解、重构线性传声器阵列采集的高压水射流靶物反射声信号,而且可以消除环境噪声及不同声源干扰信号的影响,重构信号与源标准信号的顺序一致,保留源标准信号的大部分特征信息,可以用于后续的高压水射流靶物分类识别与定位. In order to solve the decoupling,reconstruction and location problems of high pressure water jet reflected sound signal acquired by linear microphone array,a new iterative indepentdent component analysis(ICA)method was built based on the rotation product factor method of traditional ICA theory.Its algorithm principle was introduced in detail.A linear arranged multi-channel water-jet detecting system and data acquisition system was designed to do the sound signal acquisition experiments.The multi-channel simulation sound signals and actual reflected sound signals were used to verify the ICA method.The verification results show that the iterative ICA method can decompose and reconstruct the reflected sound signals of high-pressure water jet targets acquired by linear microphone array accurately.The interference influence from the environmental noise and other sound sources can be eliminated.The order of reconstructed reflected sound signal is equal to standard signal and most characteristic information of standard signals is retained.So the iterative ICA method can be used for targets classification and location of high pressure water jet.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期17-21,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51075002)
关键词 反射声 线性传声器阵列 旋转因子乘积法 迭代式ICA方法 分解重构 靶物定位 reflected sound signal linear microphone array twiddle factor multiplication method iterative ICA method decomposition and reconstruction target location
  • 相关文献

参考文献11

  • 1姚俊良,杨小牛,李建东,李钊.一种适用于无线通信系统的半盲ICA算法[J].华中科技大学学报(自然科学版),2010,38(3):76-79. 被引量:2
  • 2Abu-Amara F, Abdel-Qader I. Detection of breast cancer using independent component analysis[C]// IEEE International Conference on Electro/Informa tion Technology. Chicago: IEEE, 2007: 428-431.
  • 3Guo Jinyu, Liu Yuqin, Yuan Weiqi. Palmprint recog nition based on stochastic non-negative independent component analysis [J]. Journal of Optoelectronics Laser, 2011, 2201):1714-1717.
  • 4Hyvarinen A, Oja E. Independent component analy- sis:algorithm and application[J]. Neural Network, 2000,13(6) :411-430.
  • 5Susumu Takahashi, Yoshio Sakurai, Minoru Tsuka-da, et al. Classification of neuronal activities from tetrode recordings using independent component anal- ysis[J]. Neurocomputing, 2002, 49(12): 289-298.
  • 6Svensen M, Kruggel F, Benali H. ICA of MRI group studydata[J]. NeuroImage, 2002, 16(3): 551-563.
  • 7Amaud Delorme, Scott Makeig. EEGLAB: an open source toolbox for analysis of single trail EEG dynam- ics including independent component analysis[J]. Journal of Neuroscience Methods, 2004, 134(3): 9- 21.
  • 8Draper Bruce A, Kyugim Back, Marian Stewart Bart- lett, et al. Recognizing faces with PCA and ICA[J].Computer Vision and Image Understanding, 2003, 91 (7): 115-137.
  • 9周仲兴,明东,朱誉环,万柏坤,綦宏志.基于扩展Informax ICA的站起想象动作脑电特征提取[J].仪器仪表学报,2009,30(3):459-464. 被引量:13
  • 10吴建宁,王珏.用独立分量分析去除大鼠模型脑电信号中的心电干扰[J].测试技术学报,2009,23(4):326-330. 被引量:1

二级参考文献34

  • 1赵丽,万柏坤,高扬.独立分量分析方法在脑电信号预处理中的应用研究[J].仪器仪表学报,2003,24(z1):496-498. 被引量:8
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3赵厚德,陶均,郝智慧,赵雪征,尚昌连,王捷,王禄增.麻醉对动物实验的影响[J].中国比较医学杂志,2004,14(6):386-387. 被引量:28
  • 4陈春富.大鼠局灶性脑缺血模型研究进展[J].国外医学(脑血管疾病分册),1995,3(5):227-230. 被引量:14
  • 5付卫红,杨小牛,刘乃安,曾兴雯.通信侦察中通信复信号的盲源分离算法[J].华中科技大学学报(自然科学版),2007,35(4):33-36. 被引量:6
  • 6ROLAND P E, LARSEN B, LASSEN N A, et al. Supplementary motor area and other cortical areas in organization of voluntary movements in man [ J ]. J. Neurophysiology, 1980,43 : 118-136.
  • 7JASPER H H, PENFIELD W. Electrocardiograms in man: effect of the voluntary movement upon the electrical activity of the precentral gyrus [ J ]. Europe Archives of Psychiatry and Clinical Neuroscience, 1949,183 : 163-174.
  • 8PFURTSCHELLER G, ARANIBAR A. Event-related cortical desynchronization detected by power measurements of scal PEEG[J]. Electroencephalography and Clinical Neurophysiology, 1977,42:817-826.
  • 9KAMOUSI B, LIU ZH M, HE B. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005,13 ( 2 ) : 166 - 171.
  • 10MULLER-PUTZ G R, SCHOLOGL A, GRAIMANN B,et al. 15 Years of BCI Research at Graz University of Technology : Current Projects [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006,14 (2) :205-210.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部