期刊文献+

基于补偿的浮点八边形抽象域

Compensation-based floating-point octagon abstract domain
原文传递
导出
摘要 为了解决抽象解释理论对浮点程序分析中的主要困难存在于构造复杂抽象域时采用实数而受限于高代价的计算量问题,针对八边形抽象域上实数运算提出了基于IEEE754的带补偿量的机器浮点表示及其运算算法,减少了浮点运算的复杂性;同时,将传统八边形抽象域扩展为可靠的浮点八边形抽象域,能够在分析的效率和精度之间取得合理的权衡.实验结果表明:用带补偿的浮点替代实数能够极大地提高八边形抽象域的效率,并且保证了分析的可靠性. The main difficulties of floating-point programs analysis based on abstract interpretation exist in costly computation brought by the real number arithmetic when constructing the complex abstract domain.In this paper,a compensation-based floating-point number representation and relative arithmetic were proposed based on IEEE754 standard for octagon abstract domain.The method could reduce the complexity of floating-point arithmetic,and extend the traditional octagon abstract domain to sound floating-point octagon abstract domain,achieving a trade-off between efficiency and precision.Experimental results show that using the compensation-based floating-point octagon abstract domain rather than real number can significantly improve the efficiency,and ensure the reliability of analysis.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期76-80,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重大项目资助(91118007)
关键词 静态分析 浮点数 八边形抽象域 抽象解释 补偿量 static analysis floating-point octagon abstract domain abstract interpretation compensation
  • 相关文献

参考文献10

  • 1Cousot P. The verification grand challenge and ab- stract interpretation[C]//Verified Software: Tools, Theories, Experiments ( VSTTE 2005 ), LNCS 4171. Berlin: Springer-Verlag,2008 ; 189-201.
  • 2Min6 A. The octagon abstract domain [J]. Higher- Order and Symbolic Computation, 2006, 19(1): 31-100.
  • 3Cousot P, Cousot R. The ASTREE analyzer[C]/// Proc of ESOP' 05, LNCS 3444. Berlin: SpringeF Verlag, 2005: 21-30.
  • 4Goubault E. Static analyses of floating-point opera- tions[C]//Proc of SAS' 01, LNCS 2126. Berlin: Springer-Verlag, 2001: 234-259.
  • 5Goubault E, Martel M. Asserting the precision of floating-point computations: a simple abstract inter pretation[C]//Proc of ESOP'02, LNCS 2305. Berlin: Springer-Verlag, 2002: 209-212.
  • 6Martel M. Enhancing the implementation of mathe- matical formulas for fixed-point and floating-point arithmetics[J]. Formal Methods in System Design, 2009, 35(3): 265-278.
  • 7Chen Liqian, Mine A. A sound floating point poly- hedral abstract domain[C]//Proc of the 6th APLAS, LNCS 5356. Berlin= Springer-Verlag, 2008: 3-18.
  • 8Mine A. Relational abstract domains for the detection of floating-point run-time errors[C]//Proc of ESOP' 04, LNCS 2986. Berlin: Springer-Verlag, 2004:3- 17.
  • 9Mine A. Weakly relational numerical abstract do mains[D]. Paris: Ecole Norrnale Superieure, 2004.
  • 10Jeannet B, Mine A. Apron; a library of numerical abstract domains for static analysis[C]//Proc of the CAV 2009, LNCS 5643. Berlin: Springer-Verlag, 2009: 661-667.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部