期刊文献+

基于地质统计先验信息的随机地震反演 被引量:2

Stochastic seismic inversion based on the geostatistical priori information
下载PDF
导出
摘要 基于地质统计先验信息的随机地震反演方法是一种基于蒙特卡洛的非线性反演方法。在贝叶斯理论框架下,通过序贯高斯模拟方法(sequential Gaussian simulation,SGS)和逐渐变形算法(Gradual Deformation Method,GDM)得到基于地质统计学的先验信息,然后构建似然函数,最终利用Metropolis算法实现后验概率密度的抽样,得到反演问题的解。与确定性反演结果相比,该方法能够有效地融合测井资料中的高频信息,提高反演结果的分辨率。数值模拟试验表明:本方法的反演结果与理论模型吻合较好,具有较高的分辨率;序贯高斯模拟采用一种新的逐点模拟方式,并结合GDM,有效提高了随机反演的计算效率。 Stochastic seismic inversion based on the geostatistical priori information is a Monte Carlo based strategy for non-linear inversion.It is formulated in a Bayesian framework.Firstly,the priori information can be obtained through sequential Gaussian simulation(SGS)and gradual deformation method(GDM).Then we can construct the likelihood function.Finally,we apply Metropolis sampling algorithm in order to obtain an exhaustive description of the posteriori probability density and get the inversion results.Compared with the deterministic inversion,the inversion method we proposed can effectively integrate the high-frequency information of well-logging data and have a higher resolution.According to the numerical calculations,the final results match the model well and have a high resolution.In addition,we use the sequential Gaussian simulation(SGS)in a new implementation way and combine with GDM,which can improve the calculation efficiency of inversion method effectively.
出处 《物探化探计算技术》 CAS CSCD 2015年第3期341-347,共7页 Computing Techniques For Geophysical and Geochemical Exploration
基金 国家973项目(2013CB228604) 国家科技重大专项(2011ZX05009) 山东省自然科学基金(ZR2011DQ013) 国家自然科学基金(41204085) 中国石化地球物理重点实验室(WTYJY-WX2013-04-07)
关键词 地质统计先验信息 贝叶斯理论 高分辨率 计算效率 geostatistical priori information Bayesian theory high-resolution calculation efficiency
  • 相关文献

参考文献20

  • 1CHOPRA S,CASTAGNA J,PORTNIAGUINE O.Seismic resolution and thin-bed reflectivity inversion[J].CSEG recorder,2006,31(1):19-25.
  • 2ASTER R C,BORCHERS B,THURBER C H.Parameter estimation and inverse problems[M].Academic Press,2013.
  • 3FRANCIS A.Limitations of deterministic and advantages of stochastic seismic inversion[J].CSEG Recorder,2005,30:5-11.
  • 4HAAS A,DUBRULE O.Geostatical inversion-a sequential method of stochastic reservoir modelling constrined by seismic data[J].First break,1994,13(12):561-569.
  • 5DUBRULE O,THIBAUT M,LAMY P,et al.Geostatistical reservoir characterization constrained by3D seismic data[J].Petroleum Geoscience,1998,4(2):121-128.
  • 6ROTHMAN D H.Geostatistical inversion of 3D seismic data for thin-sand delineation[J].Geophysics,1998,51(2):332-346.
  • 7印兴耀,贺维胜,黄旭日.贝叶斯-序贯高斯模拟方法[J].石油大学学报(自然科学版),2005,29(5):28-32. 被引量:26
  • 8印兴耀,刘永社.储层建模中地质统计学整合地震数据的方法及研究进展[J].石油地球物理勘探,2002,37(4):423-430. 被引量:60
  • 9ZOU Y M,LIU W L,ZHOU H,et al.A new implementation procedure of sequential Gaussian simulation in stochastic seismic inversion[C]//2013SEG Annual Meeting,2013.
  • 10HU L Y.Gradual deformation and iterative calibration of Gaussian-related stochastic models[J].Mathematical Geology,2000,32(1):87-108.

二级参考文献22

  • 1侯景儒.空间域及时间-空间域多元信息的地质统计学研究及应用[J].中国数学地质,1995,(6).
  • 2蒋志.理论变异函数[J].中国数学地质,1994,(5).
  • 3蒋志.广义克里格方法[J].中国数学地质,1994,(5).
  • 4张团峰.油气储层随机模拟的地质应用[J].中国数学地质,1994,(5).
  • 5周叶.估计渗透率的空间分布的方法[J].中国数学地质,1991,(3).
  • 6RONALD A B, THOMAST T. Incorporating seismic data of intermediate vertical resolution into 3D reservoir models:a new method[R]. SPE, 1999, August:325-333.
  • 7BEHRENS R A, MACLEOD M K, TRAN T T, et al. Incorporating seismic attribute maps in 3D reservoir models[R]. SPE, 1998,April:122-126.
  • 8DEUTSCH C V, SRINIVASAN S, MO Y. Geostatistical reservoir modeling accounting for precision and scale of seismic data[R]. SPE, 1996,October:9-19.
  • 9XU W, TRAN T T, SRIVASTVN R M, et al. Integrating seismic data in reservoir modeling: the collocated cokriging alternative[R]. SPE, 1992,October:122-126.
  • 10ZHU H, JOURNEL A G. Formating and integrating soft data: stochastic imaging via the Markov-Bayes algorithm [A]. Soares A (ed). Geostatistics Troia 92[C]. 1993.1-12.

共引文献82

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部