期刊文献+

多分辨率人脸图像配准方法研究

Multi-resolution Joint Face Alignment
下载PDF
导出
摘要 人脸图像配准是人脸检测的后续环节,用于纠正检测结果中存在的空间配准误差。文章提出了一种多分辨率的人脸图像联合配准方法:在粗粒度上,算法通过在较低分配率上处理图像来消除主要的配准误差;在细粒度上,算法采用较高的分辨率对配准结果进行改良。在各个粒度上,将图像配准定义为所有图像信息熵和的最小化问题,并采用牛顿优化算法求解配准参数。文章在AR和Yale B两组测试图像集构造对比实验,结果证明,多分辨率人脸图像配准方法在配准效果和算法效率上优于业界主流的联合配准算法。 Face alignment,usually a following step of face detection,aims at correcting unwanted spatial mis-alignments.This paper proposes a multi-resolution solution to joint face alignment:in coarse levels,images are processed with at low resolutions to remove major mis-alignment errors;in fine levels,alignment is refined using higher resolutions.In each level,the joint alignment problem is defined as the minimization of a sum-ofentropy function calculated over all images,and transformation parameters are simultaneously estimated by a Newton-type optimization method.The article conduct comparison experiments on images from two databases,AR and Yale B,and results prove that the proposed algorithm is robust to large mis-alignment errors,and more computationally efficient than compared methods.
作者 倪权 倪伟渊
出处 《信息化研究》 2015年第4期31-35,共5页 INFORMATIZATION RESEARCH
关键词 人脸图像联合配准 多分辨率 信息熵 joint face alignment multi-resolution entropy
  • 相关文献

参考文献13

  • 1Cootes T, Taylor C, Cooper I), et al. Active shape mod- els-their training and application EJ. Computer vision and image understanding, 199,5, 61(I ) :38 - 59.
  • 2Cootes T, Edwards G, Taylor C. Active appearance mod- els EJ. IEEE transactions on pattern analysis and machine intelligence, 2001,23 (6) : 681 - 685.
  • 3Cox M, Sridharan S, Lucey S, et al. Least squares congea- ling for unsupervised alignment of images[C]. IEEE. Pro-ceeding of IEEE conference on computer vision and pattern recognition, USA: IEEE. 2008:1 - 8.
  • 4Ashraf A, Lucey S, Chen T. Fast image alignment in the Fourier domain[C]. IEEE. Proceeding of IEEE conference on computer vision and pattern recognition. USA: IEEE. 2010: 2480- 2487.
  • 5Tzimiropoulos G, Zafeiriou S, Pantic M. Robust and effi- cient parametric face alignment[C]. IEEE. Proceeding of international conference on computer vision. Spain: IEEE. 2011:1847- 1854.
  • 6Huang G, Jain V, Learned-Miller E. Unsupervised joint a- lignment of complex images[C]. IEEE. Proceeding of 11th international conference on computer vision. Brazil:IEEE. 2007 .. 1 - 8.
  • 7Ni W, Caplier A. Newton optimization based congealing for facial image alignment[C]. IEEE. Proceeding of inter- national conference on image processing. Belgium: IEEE. 2011..577 - 580.
  • 8Learned-Miller E. Data driven image models through con- tinuous joint alignment [J]. IEEE transactions on pattern analysis and machine intelligence, 2006(28) :236 - 250.
  • 9Vu N, Caplier A. Face Recognition with Patterns of Orien- ted Edge Magnitudes[C]. IEEE. Proceeding of European conference on computer vision. Greece: IEEE. 2010.. 313 - 326.
  • 10Baker S, Matthews I. Lucas-kanade 20 years on.- A unif- ying framework [J]. International journal of computer vi- sion, 2004,56(3) :221 - 255.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部