期刊文献+

LINEX损失函数下具有风险相依结构的信度模型 被引量:4

Credibility models with risks dependence structure under LINEX loss function
下载PDF
导出
摘要 在经典信度理论中,运用平方损失函数来估计保费会导致很高的惩罚额,影响保险市场的竞争力;另一方面,经典信度理论假设一个保单组合的每个保单索赔额间互相独立;但在实际应用中,各个保单索赔额间却是风险相依的.采用LINEX损失函数,将温利民等人在2012年提出的一个保单各年索赔额间具有时间变化效应的风险相依结构推广到一个保单组合的各个保单索赔额间,并且给出了LINEX损失函数下具有风险相依结构的Bühlmann模型的信度保费和LINEX损失函数下Bühlmann模型的信度保费. In classical credibility theory,the actuary uses squared-error loss function to estimate premium,but it can lead to very high penalties which affects the competitive strength of insurance market.On the other hand,classical credibility theory assumes that the claim amounts of every insurance policy in a portfolio are independent,however,the claim amounts of every insurance policy are risks dependent.Wen et al.(2012)studied the credibility model with time changeable effects among the claim amounts of one insurance policy and obtained credibility premium,this risks dependence structure was generalized to the claim amounts of every insurance policy.The Bühlmann-Straub model was considered with risks dependence structure among every insurance policy under LINEX loss function and the credibility premium formula which generalized the classical credibility model is obtained.
出处 《山东理工大学学报(自然科学版)》 CAS 2015年第4期11-15,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(11361058)
关键词 信度模型 LINEX损失函数 风险相依结构 credibility models LINEX loss function risks dependence structure
  • 相关文献

参考文献4

二级参考文献37

  • 1邓国华.风险非同质时索赔次数的统计研究[J].江西师范大学学报(自然科学版),2004,28(3):228-231. 被引量:5
  • 2Aggarwal, P., Bayes predictor of one-parameter exponential family type population mean under balanced loss function, Communications in Statistics - Theory and Methods, 35(8)(2006), 1397- 1408.
  • 3Buhlmann, H., Experience rating and credibility, Astin Bulletin, 4(1967), 199-207.
  • 4Buhlmann, H. and Gisler, A., A Course in Credibility Theory and Its Applications, Springer, Nether- lands, 2005.
  • 5Bulmann, H. and Straub, E., Glaubwiidigkeit ftir Schadensaze, Bulletin of the Swiss Association of Actuaries, 70(1)(1970), 111-133.
  • 6Dey, D.K, Ghosh, M. and Strawderman, W., On estimation with balanced loss functions, Statistics and Probability Letters, 45(2)(1999), 97-101.
  • 7Ebrahimzadeh, M., Ibrahim, N.A. and Jemain, A.A., Unbiased estimation of structural parameters in credibility models with dependence induced by common effects, to appear in Bulletin of the Malaysian Mathematical Sciences Society, 2011.
  • 8Farsipour, N.S. and Asgharzadeh, A., Estimation of a normal mean relative to balanced loss functions, Statistical Papers, 45(2004), 279 -286.
  • 9Frees, E.W., Young, V.R. and Yu, L., Case studies using panel data models, North American Act*tarial Journal, 4(4)(2001), 24-42.
  • 10Gomez-Deniz, E., A generalization of the credibility theory obtained by using the weighted balanced loss function, Insurance: Mathematics and Economics, 42(2008), 850- 854.

共引文献32

同被引文献19

  • 1Varian H R.A Bayesian approach to real estate assessment,1975.
  • 2Bühlmann H,Gisler A.A course in credibility theory and its applications. . 2005
  • 3温利民,张先坤,郑丹,方婧.??LINEX损失函数下的信度模型(英文)(J)数学季刊. 2012(03)
  • 4Rao C R,Toutenburg H.Linear models. . 1995
  • 5Ahmad Parsian.??On the admissibility of an estimator of a normal mean vector under a linex loss function(J)Annals of the Institute of Statistical Mathematics . 1990 (4)
  • 6Catalina Bolancé,Montserrat Guillén,Jean Pinquet.??Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects(J)Insurance Mathematics and Economics . 2003 (2)
  • 7EdwardW. Frees,Ping Wang.??Credibility Using Copulas(J)North American Actuarial Journal . 2005 (2)
  • 8Limin Wen,Xianyi Wu,Xian Zhou.??The credibility premiums for models with dependence induced by common effects(J)Insurance Mathematics and Economics . 2008 (1)
  • 9Limin WEN,Wenli DENG.THE CREDIBILITY MODELS WITH EQUAL CORRELATION RISKS[J].Journal of Systems Science & Complexity,2011,24(3):532-539. 被引量:7
  • 10温利民,吴贤毅.指数保费原理下的经验厘定[J].中国科学:数学,2011,41(10):861-876. 被引量:24

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部