期刊文献+

采用NSCT分解和主成分分析的高光谱异常检测

High spectral anomaly detection using NSCT decomposition and principal component analysis
原文传递
导出
摘要 针对复杂背景信息对高光谱异常检测干扰而导致检测效果降低的问题,提出了一种新的基于背景抑制的异常检测算法。对高光谱图像进行NSCT分解,得到各波段的高频信息和低频信息;对高频系数进行重构,得到只含有高频信息的高光谱数据;对原图像与低频信息作差,得到背景残差图像,利用主成分分析法对其进行背景抑制,得到背景信息充分抑制的高光谱数据,并与重构后的高频信息加权融合,得到有效抑制背景并凸显目标的高光谱数据,最后采用KRX算法对处理后的图像异常检测。结果表明,本方法检测性能优越,取得了较好的检测效果和较低的虚警率。 To solve the problem that complex background information leads to reduction of anomaly detection effectiveness,a novel anomaly detection algorithm is proposed to improve detection effect by suppressing background of imagery.Each band of hyperspectral imagery was decomposed by NSCT transformation to obtain the high frequency and low frequency information.To reconstruct the high frequency coefficients,it gets hyperspectral data just containing the high frequency information.The background residual error data which was the minus of the hyperspectral imagery and low frequency images was processed to get prominent target.Furthermore,hyperspectral data background suppressed is received by using principal component analysis(PCA).Hence,ultima hyperspectral data is gained by fusing high frequency information with hyperspectral data background suppressed.At last,the images processed is detected by KRX algorithm.It turns out that the proposed algorithm outperformed the other algorithms and obtained a better effect of detection and a lower false alarm rate.
机构地区 空军航空大学 [
出处 《自动化与仪器仪表》 2015年第5期63-66,共4页 Automation & Instrumentation
基金 吉林省科技发展计划资助项目(20140101213JC) 全军军事学研究生课题
关键词 高光谱图像 NSCT分解 主成分分析 背景抑制 异常检测 Hyperspectral image NSCT decomposition Background suppressed Anomaly detection
  • 相关文献

参考文献13

  • 1杜博,张良培,李平湘,钟燕飞,陈涛.一种基于随机场模型的高光谱影像目标探测算法[J].计算机科学,2010,37(6):289-292. 被引量:4
  • 2Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattem with unknown spectral distribution[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1990, 38(10): 1760-1770.
  • 3Geng X, Sun K, Ji L. Band selection for target detection in hyperspec- tral imagery using sparse CEM[J]. Remote Sensing Letters, 2014, 5 (12): 1022-1031.
  • 4Molero J M, Paz A, Garz6n E M, et al. Fast anomaly detection in hy- perspectral images with RX method on heterogeneous clusters[J]. The Journal of Supercomputing, 2011, 58(3): 411-419.
  • 5赵春晖,李晓慧,田明华.采用主成分量化和密度估计期望最大聚类的高光谱异常目标检测[J].光子学报,2013,42(10):1224-1230. 被引量:10
  • 6Das S, Kundu M K. NSCT-based multimodal medical image fusion us- ing pulse-coupled neural network and modified spatial frequency[J]. Medical & biological engineering & computing, 2012, 50(10): 1105-1114.
  • 7Li W, Prasad S, Fowler J E, et al. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis[J]. Geo- science and Remote Sensing, IEEE Transactions on, 2012, 50(4): 1185-1198.
  • 8Acito N, Diani M, Corsini G. On the CFAR Property of the RX Algo- rithm in the Presence of Signal-Dependent Noise in Hyperspectral Im- ages[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2013, 51 (6): 3475-3491.
  • 9Gurram P, Kwon H, Han T. Sparse kernel-based hyperspectral anoma- ly detection[J]. Geoscience and Remote Sensing Letters, IEEE, 2012, 9 (5): 943-947.
  • 10Matteoli S, Veracini T, Diani M, et al. Models and methods for auto- mated background density estimation in hyperspectral anomaly detec- tion[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2013, 51(5): 2837-2852.

二级参考文献33

  • 1张兵,陈正超,郑兰芬,童庆禧,刘银年,杨一德,薛永祺.基于高光谱图像特征提取与凸面几何体投影变换的目标探测[J].红外与毫米波学报,2004,23(6):441-445. 被引量:21
  • 2杨哲海,周玉岩,朱艳,张俊.高光谱影像分类EM算法的完善[J].测绘科学技术学报,2006,23(1):36-40. 被引量:4
  • 3Baker C J,Pink J M,Toughr J A. A statistical model for radar target detection in clutter[C] //Proceedings of the 1988 IEEE National Radar Conference. 1988 : 241-245.
  • 4Manolakis D G, Marden D, Kerekes J P, et al. statistics of hyperspectral imaging data [C] //Proceedings of SPIE. 2001 (4381) : 308-316.
  • 5Chapple P B, Bertilone D C, Caprari R S, et al. Stochastic modelbased processing for detection of small targets in non-Oaussian natural imagery [J]. IEEE Trans. Image Processing, 2001, 10 (4) :554-564.
  • 6Margalit A, Reed I S, Gagliardi R M. Adaptive optical target detection using eorrelated images [J]. IEEE Trans. Aerospace and Eleetronie Systems, 1985,21 (3) : 394-405.
  • 7Schweizer S M, Moura J M F. Hyperspectral imagery: clutter adaptation in anomaly detection [J].IEEE Trans. Information Theory,2000,46(5) :1855-1871.
  • 8Reed R,Yu X. Adaptive multi-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Trans. Acoust. , Speech, Singal Process, 1990,38 (10) : 293-305.
  • 9Kwon H, Nasrabadi N M. Kernel RX-Algorithm: a nonlinear anomaly detector for hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sensing, 2005,43 (2) : 388-397.
  • 10Chang C I,Chiang S S. Anomaly detection and classification for hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sensing,2002,40(6) :1314-1325.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部