期刊文献+

基于精煤灰分预测的重介悬浮液密度自动设定系统设计 被引量:5

The design of dense medium suspension density setting system based on clean coal ash prediction
下载PDF
导出
摘要 为了使重介悬浮液密度及时适应选煤生产的需要,设计出重介悬浮液密度自动设定系统。根据重介选煤厂实际操作情况,先设计训练精煤灰分预测的BP神经网络,再采用Wincc、Matlab编写程序实现重介悬浮液密度的自动设定。该系统可以对一系列密度数据下的精煤灰分进行预测,根据预测结果选择最佳密度设定值,有利于提高精煤灰分的可控性。生产结果表明:在该系统设定的密度值下,精煤灰分在要求的范围内,说明系统运行效果良好。 Dense medium suspension density setting system is designed to satisfy the requirement for production. In this system,according to the actual operation of heavy medium coal preparation plant,firstly,BP neural network for clean coal ash prediction is designed and trained,and then automatic setting of suspension density is realized by Wincc and Matlab programming. This system can predict ash of clean coal with different density and then select optimal setting,which can availably control ash of clean coal.The application shows that required clean coal ash is stable under the density setting value in this system,which suggests the system works well.
作者 孔利利
出处 《选煤技术》 CAS 2015年第4期68-71,共4页 Coal Preparation Technology
关键词 重介选煤 精煤灰分预测 悬浮液密度设定 BP神经网络 dense medium coal preparation clean coal ash prediction suspension density setting BP neural network
  • 相关文献

参考文献6

二级参考文献38

  • 1燕瑛,刘兵山,黄聪,成传贤.缝合复合材料面内刚度和强度的神经网络预测[J].复合材料学报,2004,21(6):179-183. 被引量:6
  • 2赖越殿,王秀荣.重介质选煤过程中悬浮液的动态密度模型[J].煤炭科学技术,1995,23(4):54-56. 被引量:5
  • 3吴式瑜,叶大武,马剑.中国选煤的发展[J].煤炭加工与综合利用,2006(5):9-11. 被引量:21
  • 4Y Le Curl,J S Denker, S A Solla. Optimal brain damage[A]. Advances in Neural Information Processing Systems[ C ]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1990, 2: 598 - 605.
  • 5B Hassibi, D G Stork. Second-order derivatives for network pruning:optimal brain surgeon[ A] .Advances in Neural Informarion Processing Systems[ C]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc,1993,5:164- 171.
  • 6T Cibas, F F Soulie, P Gallinari, S Raudys. Variable selection with neural networks [ J ]. Neurocomputing, 1996, 12 ( 2 - 3 ) : 223- 248.
  • 7M E Ricotti, E Zio. Neural network approach to sensitivity and uncertainty analysis [ J ]. Reliability Engineering and System Safety, 1999,64(1) :59 - 71.
  • 8Saltelli S Tarantola, K-S Chan. A quantitative model independent method for global sensitivity analysis of model output[ J]. Technometrics, 1999,41 ( 1 ) : 39 - 56.
  • 9Philippe Lauret,Eric Fock, Thierry Alex Mara. A node pruning algorithm based on a Fourier amplitude sensitivity test method [ J ]. IEEE Transactions on Neural Networks, 2006, 17 (2) : 273 - 293.
  • 10R I Cukier, C M Fortuin, K E Shuler, A G Petscheck, J H Schaibly. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients [J]. Journal of Chemical Physics, 1973,59 (8) : 3873 - 3878.

共引文献63

同被引文献41

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部