期刊文献+

考虑刀具偏摆的微铣削瞬时切削厚度模型对比 被引量:1

Cutting thickness model comparison considering cutting tool deflection in micro milling
下载PDF
导出
摘要 为采用更准确的刀尖运动轨迹方法来模拟微铣削加工过程,以减小圆弧线描述微铣刀刀尖运动的轨迹误差,采用次摆线描述刀尖的运动轨迹,并且综合考虑刀具偏摆对加工过程的影响,建立1种改进的瞬时切削厚度理论计算模型,重点研究了刀具旋转过程中刀具偏摆和每齿进给量对瞬时切削厚度的影响,同时与多种不同的切削厚度模型进行了对比,仿真分析结果表明:考虑刀具偏摆的瞬时切削厚度模型与真实轨迹得到的瞬时切削厚度非常接近,验证了文中改进模型的准确性.另外,瞬时切削厚度随刀具偏摆的增大而增大,进给量越大,影响越显著. To use a more accurate method to simulate the trajectory of the tip of micro milling process, and decrease the micro cutter tip movement errors. This paper describes the use of trochoidal tip trajectory, and considering the impact on the tool deflection process. Besides, an improved theoretical model was established for the instantaneous chip thickness, the course focused on the tool rotation, the tool deflection and the impact on the amount of feed per tooth momentary cutting thickness, mean- while, a variety of different cutting thickness models were compared. The simulation results show that the thickness from the model of the instantaneous cutting thickness considering cutting tool deflection was very close to the real trajectory, which verified the accuracy of the improved model. In addition, the thickness of the instantaneous cutting increases with the increases of cutting tool deflection, the greater the feed amount, the more significant the impact.
作者 廖冬
出处 《排灌机械工程学报》 EI CSCD 北大核心 2015年第3期273-276,共4页 Journal of Drainage and Irrigation Machinery Engineering
基金 河南省科技厅科技计划项目(102300410145)
关键词 瞬时切削厚度 刀尖轨迹 次摆线 刀具偏摆 momentary cutting thickness tip trajectory trochoidal curve path tool deflection
  • 相关文献

参考文献3

二级参考文献20

  • 1M.P. Vogler, R.E. Devor, S.G. Kapoor. On the Modeling and Analysis of Machining Performance in Micro Endmilling[J]. Journal of Manufacturing Science and Engineering, 2004, 126 (4): 685-705.
  • 2K. Liu, X.P. Li, M. Rahman. Characteristics of High Speed Microcutting of Tungsten Carbide[J], Journal of Materials Processing Technology, 2003, 140:352 - 357.
  • 3S. M. Son, H.S. Lim, J.H. Ahn, Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting [J]. International Journal of Machine Tools and Manufacture, 2005, 45:529 - 535.
  • 4Martellotti M. E. An Analysis of the Milling Process[J] Transactions of the ASME, 1941, 63:677 -700.
  • 5Martellotti M. E. An Analysis of the Milling Process, Part 2: Down Milling[J]. Transactions of the ASME, 1941, 67:233 - 251.
  • 6Bao W. Y, and Tansel I. N. Modeling Micro- End- Milling Operations, Part 1: Analytical Cutting Force Model[J]. International Journal of Machine Tool & Manufacture, 2000, 40 (15): 2155- 2174.
  • 7Li H. Z, and Li X. P. Theoretical Modelling of Milling Process Geometry Based on the True Tooth Trajectory, Part 1: Without Cutter Runout[R]. Report of Department of Mechanical Engi- neering, The National University of Singapore, 2000.
  • 8SPIEWAK S. An improved model of the chip thickness in milling [J]. Annals of the CIRP, 1995, 44(1):39-42.
  • 9MARTELLOTTI M E. An analysis of the milling process [J].Trans. ASME, 1941, 63: 677-700.
  • 10MARTELLOTTI M E. An analysis of the milling process-- part 2 down milling [J]. Trans. ASME, 1945, 67: 233-251.

共引文献13

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部