期刊文献+

一种新的基于半点运算与多基表示的标量乘法扩展算法

下载PDF
导出
摘要 椭圆曲线密码体制的快速实现依赖于标量乘法的运算效率。相对于双基链,多基链的表示形式由于其更短的链长和汉明重量更适合于计算椭圆曲线的标量乘法。本文提出一种新的基于2,5,7的多基链整数表示形式,并结合半点运算与EXTEND SMBR表示方法给出一种有效计算椭圆曲线标量乘法的算法。用MIRACL库在VC++平台上实现了该算法,并与其他算法进行了比较。实验结果表明:该方法以增加小量的预存储点为代价,有效的降低标量乘法计算的运算量和复杂度,有利于椭圆曲线密码体制的快速实现。
作者 张占军
出处 《福建电脑》 2015年第2期94-96,共3页 Journal of Fujian Computer
  • 相关文献

参考文献10

  • 1Dimitrov V, Imbert L, Mishra P K. Efficient and Secure EllipticCurve Point Multiplication Using Double Base Chain [C]//Proc. of Cryptolo- gy-ASIACRYPT' 05. [S. 1.]: Spring-Verlag, 2005.
  • 2Wong K W, Lee E C W, Cheng L M, et al. Fast Elliptic ScalarMuhi- phcation Using New Double-base Chain and Point Halving [J]. Applied Mathematics and Computation, 2006, 183(2): 1000-1007.
  • 3lsmail A M, Rushdan M. Elliptic Curves Scalar MultiplicationCombin- ing Multi-base Number Representation with Point Halving [EB/OL]. (2008-08-02). http://eprint.iacr.org/2008/317.
  • 4陈辉,鲍皖苏.基于半点运算与多基表示的椭圆曲线标量乘法[J].计算机工程,2008,34(15):153-155. 被引量:8
  • 5洪银芳,桂丰,丁勇.基于半点和多基表示的标量乘法扩展算法[J].计算机工程,2011,37(4):163-164. 被引量:7
  • 6E.W. Knudsen, "Elliptic Scalar Multiplication using Point Halving," ASIACRYPT'99,LNCS 1716, K.Y. Lain, E. Okamoto and C. Xing Ed., pp. 135-149, 1999.
  • 7R. Schroeppel, "Elliptic Curve Point Ambiguity Resolution Apparatus and Method,"Intemational Patent Application Number PCT/US00/31014, filed 9 November 2000.
  • 8G. N. Purohit, Asmita Singh Rawat. Fast Scalar Multiplication in ECC Using The Multi Base Number System [J]. IJCSI International Journal of Computer Science Issues,2011,8(1):131-137.
  • 9Doche C, Imbert L. Extended Double-base Number System withAp- plications to Elliptic Curve Cryptography [C]//Proc. of INDOCRYPT' 06. [S. 1.]: Springer-Verlag, 2006.
  • 10Mishra P K, Dimitrov V. Efficient Quintuple Formulas for Elliptic- Curves and Efficient Scalar Multiplication Using MultibaseNumber Repre- sentation[C]//Proc. oflSC'07. IS. I. : Spring-Verlag,.

二级参考文献13

  • 1Dimitrov V, Imbert L, Mishra P K. Efficient and Secure Elliptic Curve Point Multiplication Using Double Base Chain[C]//Proc. of Cryptology-ASIACRYPT'05. [S. l.]: Spring-Verlag, 2005.
  • 2Mishra P K, Dimitrov V. Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation[C]//Proc. of ISC'07. [S. l.]: Spring-Verlag,2007.
  • 3Doche C, lmbert L. Extended Double-base Number System with Applications to Elliptic Curve Cryptography[C]//Proc. of INDOCRYPT'06. [S. l.]: Springer-Verlag, 2006.
  • 4Knudsen E W. Elliptic Scalar Multiplication Using Point Halving [C]//Proc. of ASIACRYPT'99. [S. l.]: Springer-Verlag, 1999.
  • 5Wong K W, Lee E C W, Cheng L M, et al. Fast Elliptic Scalar Multiplication Using New Double-base Chain and Point Halving[J]. Applied Mathematics and Computation, 2006, 183(2): 1000-1007.
  • 6Ismail A M, Rushdan M. Elliptic Curves Scalar Multiplication Combining Multi-base Number Representation with Point Halving[EB/OL]. (2008-08-02). http://eprint.iacr.org/2008/317.
  • 7Dimitrov V S, Imbert L, Mishra P K. Fast Elliptic Curve Point Multiplication Using Double-base Chain[Z]. (2005-06-05). http:// eprint .iacr.org/2005/069.
  • 8Mishra P K, Dimitrov V. Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation[Z]. (2007-04-01 ). http://eprint.iacr.org/2007/040.
  • 9Knudsen E W. Elliptic Scalar Multiplication Using Point Halving[C]//Proc. of ASIACRYPT'99. [S. l.]: Springer-Verlag, 1999: 135-149.
  • 10Wong K W, Lee E C W. Fast Elliptic Scalar Multiplication Using New Double-base Chain and Point Halving[Z]. (2006-12-01). http://eprint .iacr.org/2006/124.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部