期刊文献+

载印度墨水相变型光声/超声双模态造影剂的制备及体外显影 被引量:1

Preparation of India ink encapsulated phase-transition contrast agent for photoacoustic/ultrasound dual-mode imaging in vitro
下载PDF
导出
摘要 目的制备一种新型的光声/超声双模态造影剂,观察其体外光致相变作用以及光声/超声显影效果。方法采用多步乳化法合成载印度墨水及全氟己烷(PFH)的高分子微球(i-PFH-PLGA),检测其基本理化性质、光致相变作用及体外增强光声及超声成像的显像效果。结果制备的i-PFH-PLGA呈球型,平均粒径为(542.1±68.91)nm。经激光辐照后,显微镜下可观察到较多的i-PFH-PLGA纳米粒发生液气相转变产生微泡;体外光声成像实验显示,i-PFH-PLGA纳米粒可检测到明显的光声信号,且光声信号的强度随纳米粒浓度的增加而增强;体外超声成像实验显示,经激光照射后,i-PFH-PLGA纳米粒组回声强度较辐照前明显增强(P<0.05),而单纯的液态氟碳和印度墨水辐照前后回声强度未见明显改变。结论成功制备出的载印度墨水和液态氟碳的双模态造影剂可用于体外光声/超声成像研究。 Objective To prepare a new photoacoustic/ultrasound dual-mode contrast agent,and to investigate its optical droplet vaporization effect and multifunctional imaging in vitro.Methods The polymeric nanoparticles loaded with India ink and perfluorohexane(i-PFH-PLGA)were synthesized by multi-emulsion technology,and its physicochemical properties,optical droplet vaporization effect and photoacoustic/ultrasound imaging were assessed.Results The nanoparticles were spherical,with average particle size of(542.1±68.91)nm.After the pulsed laser irradiation,the phase-transition could be observed by the optical microscope.Photoacoustic imaging in vitro,i-PFH-PLGA showed a strong photoacoustic signal,and the signal intensity increased with the rising of i-PFH-PLGA concentration.The ultrasonic signal intensity enhanced after triggered by pulsed laser system,while no specific changes were found in the PFH-PLGA group and ink group.Conclusion The dual-modality nanoparticles loaded with India ink and perfluorohexane is successfully prepared,which can be used as contrast agents for photoacoustic/ultrasound imaging in vitro.
出处 《中国医学影像技术》 CSCD 北大核心 2016年第1期8-12,共5页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(81130025 81471713 81401423) 重庆高校创新团队建设计划(KJTD201303)
关键词 印度墨水 光声 超声检查 造影剂 纳米技术 India ink Photoacoustic Ultrasonography Contrast media Nanotechnology
  • 相关文献

参考文献15

  • 1Guo C, Jin Y, Dai Z. Multifunctional ultrasound contrast agents for imaging guided photothermal therapy. Bioconjug Chem, 2014,25(5) :840-854.
  • 2Zhang H, Wu H, Wang J, et al. Graphene oxide-BaGdF5 nano- composites for multi-modal imaging and photothermal therapy. Biomaterials, 2015,42 : 66-77.
  • 3Wang LV, Hu S. Photoaeoustic tomography: In vivo imaging from organelles to organs. Science, 2012,335(6075) : 1458-1462.
  • 4Jennings LE, Long NJ. "Two is better than one--probes for dual- modality molecular imaging. Chem Commun (Camb), 2009,(24):3511-3524.
  • 5Aquaro GD, Todiere G, Strata E, et al. Usefulness o[ India ink artifact in steady-state free precession pulse sequences for detec- tion and quantification of intramyocardial fat. J Magn Reson Ima ging, 2014,40(1):126-132.
  • 6Williams BB, Khan N, Zaki B, et al. Clinical electron paramag- netic resonance (tPR) oximetry using India ink. Adv Exp Med Biol, 2010,662:149-156.
  • 7Jian J, Liu C, Gong Y, et al. India ink incorporated multifune- tional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor thera- py. Theranostics, 2014,4(10) : 1026-1038.
  • 8Shanmugam V, Selvakumar S, Yeh CS. Neainfrared light re- sponsive nanomaterials in cancer therapeutics. Chem Soc Rev, 2014,43(17) :6254-6287.
  • 9Kang B, Yu D, Dai Y, Chang S, et al. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as "bomb" agents. Small, 2009,5(11) : 1292-1301.
  • 10Puett C, Sheeran PS, Rojas JD, et al. Pulse sequences for uni- form perfluorocarbon droplet vaporization and ultrasound ima- ging. Ultrasonics, 2014,54(7) :2024-2033.

二级参考文献13

  • 1Kaneda MM, Caruthers S, Lanza GM, et al. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng, 2009,37(10):1922-1933.
  • 2Kornmann LM, Curls I)M, Hermeling E, et al. Perfluorohexane- loaded macrophages as a novel ultrasound contrast agent : A feasi- bility study. Mol Imaging Biol, 2008, 10(5):264 270.
  • 3Saha P, Modarai B, Humphries J, et al. The monocyte/macro- phage as a therapeutic target in atherosclerosis. Curr Opin Phar- macol, 2009,9(2) : 109-118.
  • 4Schad KC, Hynynen K: In vitro characterization of perfluorocar- bon droplets for focused ultrasound therapy. P hys Med Biol, 2010,55(17) :4933-4947.
  • 5Diaz-L6pez R, Tsapis N, Fattal E. Liquid perf|uorocarbons as contrast agents for ultrasonography and (19) F-MRI. Pharm Res, 2010,27(1):1-16.
  • 6Ragde H, Kenny GM, Murphy GP, et al. Transrectal ultrasound microbubble contrast angiography of the prostate. Prostate,1997,32 (4) : 279-283.
  • 7Rapoport NY, Efros AL, Christensen DA, et al. Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers. Bubble Sci Eng Technol, 2009,1(1-2):31 39.
  • 8Pisani E, Tsapis N, Paris J, et al. Polymeric'nano/microcap- sules of liquid perfluorocarbons for ultrasonic imaging: Physical characterization. Langmuir, 2006,22(9) :4397-4402.
  • 9Kripfgans OD, Fowlkes JB, Miller DL, et al. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultra- sound Med Biol, 2000,26(7) : 1177-1189.
  • 10Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemul- sions/microbubbles. I Control Release. 2009. 138(3) :268-276.

共引文献6

同被引文献13

  • 1Huang P, Rong P, Jin A, et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv Mater, 2014,26(37) : 6401-6408.
  • 2Wang Y, Song D, Costanza F, et al. Targeted delivery of tanshi- none IIA-conjugated mPEG-PLGA-PLL-cRGD nanoparticles to hepatocellular carcinoma. J Biomed Nanotechnol, 2014, 10 (11) : 3244-3252.
  • 3Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered Gold nanostructures. Nanoscale, 2014, 6 ( 5 ): 2502-2530.
  • 4Xu G, Rajian JR, Girish G, et al. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J Biomed Opt, 2013,18(1) :10502.
  • 5Lin J, Wang S, Huang P, et al. Photosensitizer-loaded Gold ves- icles with strong plasmonie coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano, 2013, 7 (6) : 5320-5329.
  • 6Peng J, Zhao L, Zhu X, et al. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials, 2013, 34 (32) :7905-7912.
  • 7Pekkanen AM, Dewitt MR, Rylander MN. Nanoparticle en- hanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol, 2014,10(9) : 1677-1712.
  • 8Wang YH, Chen SP, Liao AH, et ai. Synergistic delivery of Gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy. Sci Rep, 2014,4 : 5685.
  • 9Kruizinga P, van der Steen AF, de Jong N, et al. Photoacoustic imaging of carotid artery atherosclerosis. J Biomed Opt, 2014, 19(11) : 110504.
  • 10Dong A, Shen J, Zeng M, et al. Vascular cell-adhesion mole- cule-1 plays a central role in the proangiogenic effects of oxida- tive stress. Proc Natl Acad Sci USA, 2011, 108 (35): 14614-14619.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部