期刊文献+

基于多特征深度学习的人脸性别识别 被引量:15

Face gender recognition based on multi-feature deep learning
下载PDF
导出
摘要 为解决人脸性别识别这一传统模式识别领域中富有挑战性的难题,提出一种联合人脸高层特征学习和低层特征学习的深层网络模型。利用卷积和下采样交替提取人脸局部的、抽象的特征,重建原始的输入人脸图像,以学习人脸全局的特征作为补充。联合两类特征时,加入一个可训练的权重进行调节,利用这种多特征结构进行最终的性别分类。实验结果表明,该方法在学习能力和泛化能力上具有超越现有人脸性别识别方法的优秀性能。 To address the challenging problems of face gender recognition based on facial images in the traditional pattern recognition filed,a deep neural network model that learnt the joint features of human face was proposed.The convolution together with sub-sampling was adopted to obtain the human face’s abstract and local features.The human face’s global feature was extracted through reconstructing the facial image as further information.When combining these two kinds of features,a trainable weight was added in the network to improve the final gender recognition performance.Experimental results verify that the proposed method has better learning ability and generalization ability than current face gender recognition methods.
出处 《计算机工程与设计》 北大核心 2016年第1期226-231,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61303249) 海南省重大科技基金项目(JDJS2013006)
关键词 人脸性别识别 深度学习 多特征学习 学习能力 泛化能力 gender recognition deep learning multi-feature learning learning ability generalization ability
  • 相关文献

参考文献12

  • 1Mkinen E,Raisamo R.Evaluation of gender classification methods with automatically detected and aligned faces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(3):541-547.
  • 2Mkinen E,Raisamo R.An experimental comparison of gender classification methods[J].Pattern Recognition Letters,2008,29(10):1544-1556.
  • 3Krizhevsky A,Sutskever I,Hinton GE.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012:1106-1114.
  • 4Cirean D,Meier U,Schmidhuber J.Multi-column deep neural networks for image classification[C]//IEEE Conference on Computer Vision and Pattern Recognition,2012:3642-3649.
  • 5Susskind J,Mnih V,Hinton G.On deep generative models with applications to recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,2011:2857-2864.
  • 6Sermanet P,Kavukcuoglu K,Chintala S.Pedestrian detection with unsupervised multi-stage feature learning[C]//IEEE Conference on Computer Vision and Pattern Recognition,2013:3626-3633.
  • 7Zhang C,Zhang Z.Improving multiview face detection with multi-task deep convolutional neural networks[C]//IEEE Winter Conference on Applications of Computer Vision,2014:1036-1041.
  • 8Sun Y,Wang X,Tang X.Deep convolutional network cascade for facial point detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2013:3476-3483.
  • 9Huang GB,Lee H,Learned-Miller E.Learning hierarchical representations for face verification with convolutional deep belief networks[C]//IEEE Conference on Computer Vision and Pattern Recognition,2012:2518-2525.
  • 10Sabzevari M,Toosizadeh S,Quchani SR,et al.A fast and accurate facial expression synthesis system for color face images using face graph and deep belief network[C]//International Conference on Electronics and Information Engineering,2010:354-358.

二级参考文献7

  • 1GOLOMB B,LAWRENCE D,SEJNOWSKI T.SEXNET:a neural network identifies sex from human faces[C] //Proc.Advance in Neural Information Porocessing Systems.Denver,USA:[s.n.] ,1990:572-577.
  • 2MOGHADDAM B,YANG M H.Learning gender with support faces[J] .IEEE Trans.Pattern Analysis and Machine Intelligence,2002,24(5):707-711.
  • 3BALUJA S,ROWLEY H A.Boosting sex identification performance[J] .International Journal of Computer Vision,2007,7l(1):111-119.
  • 4GARCIA C,DELAKIS M.Convolutional face finder:a neural architecture for fastand robust face detection[J] .IEEE Trans.Pattern Analysis and Machine intelligence,2004,26(11):1408-1423.
  • 5BOTTOU Y L,BENGIO L Y,HAFFNER P.Gradient-based learning applied to document recognition[J] .Proceedings of the IEEE,1988,86(11):2278-2324.
  • 6LECUN Y,BOTTOU L,ORR G B.Efficient backprop,neural networks:tricks of the trade[M] .Berlin Heidelberg:Springer,1998.
  • 7BRADEY E.The jackknife the bootstrap and resample plans[M] .Philadelphia:Society for Industrial and Applied Mathematics,1982.

共引文献7

同被引文献71

引证文献15

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部