期刊文献+

融入空间关系的二型模糊模型高分辨率遥感影像分割 被引量:7

Segmentation of high-resolution remote sensing images with type-2 fuzzy model based on spatial relationship
原文传递
导出
摘要 为解决高分辨率遥感影像分割中,由光谱测度的空间复杂性、相同类型地物目标异质性增大带来的类属不确定性以及分割决策不确定性等引起的分割精度下降问题,提出一种融入空间关系的区间二型模糊模型高分辨率遥感影像监督分割方法。(1)建立高斯函数模型作为一型模糊模型,用来刻画像素类属的不确定性;(2)模糊化一型模糊模型中的均值或标准差,建立区间二型模糊模型,以强化类属的不确定表达和增加分割决策信息;(3)综合一型模糊模型及区间二型模糊模型的上、下隶属函数建模模糊决策模型;(4)融入邻域像素关系,使用待分像素及其邻域像素在模糊决策模型中的隶属度共同决定像素的类属。采用本文算法分别对真实高分辨遥感影像及合成影像进行分割,并对测试结果进行定性和定量分析。结果表明,本文算法可以得到更高的分割精度。 Image segmentation is a significant step in image processing. High-resolution remote sensing images can clearly characterize landscape information and eliminate the membership uncertainty caused by mixed pixels. It has considerable advantages and potential in precise segmentation. Nonetheless,the spatial complexity caused by spectral measurement and the enhanced differences among pixels in the same object may reduce segmentation result accuracy. Thus,this study establishes an interval type-2fuzzy model for detected images. Interval type-2 fuzzy theory considers the main and the secondary membership functions; the latter is represented by the label"membership 1"to express the uncertainty of pixel membership and of a segmentation decision. The aforementioned problem is solved effectively with the proposed method. The drop type problem in type-2 fuzzy theory is anotherfocus of research in this field; a fuzzy decision model is established by reducing the type-2 fuzzy model to a type-1 model. The fuzzy decision model directly influences segmentation accuracy,and recent studies are all based on the upper and lower membership functions. These models can improve decision quality to some extent; however,they do not consider the main membership function. This neglect may significantly influence decision results,particularly when the influence of neighborhood pixels cannot be incorporated into the supervised image segmentation algorithm. To overcome these shortcomings,we proposed high-resolution remote sensing image segmentation by introducing a spatial relationship into the interval type-2 fuzzy model. The proposed algorithm considers the influences of the upper,lower,and the main membership functions in establishing the fuzzy decision model.First,a type-1 fuzzy model is built with the Gauss function to characterize the uncertainty of pixel membership. Then,we extend the mean and variance of this model to construct the type-2 fuzzy model,which improves the expression of the membership function in the type-1 fuzzy model and serves as the knowledge basis to enhance segmentation decision accuracy. A segmentation decision model is then established based on the information derived from the upper,lower,and main membership functions of the trained data. Finally,the membership of a pixel is decided by the membership functions of both the pixel itself and its neighbors to optimize the segmentation of high-resolution remote sensing images.We compare this method with maximum likelihood segmentation and an interval type-2 fuzzy model segmentation without a spatial relationship via high-resolution real images. Qualitative and quantitative analysis findings indicate that the method applied in this study generates high segmentation accuracy.This study proposes a supervised image segmentation method based on an interval type-2 fuzzy model with a spatial relationship. This method improves the uncertainty expression of pixel membership,solves the problems caused by complicated spatial relevance,and enhances the accuracy of the segmentation strategy. Furthermore,the experiments show that this method is effective and feasible. In the future,the Gauss mixture model will be used as a type-1 fuzzy model to potentially improve the accurate characterization of landscape features.
出处 《遥感学报》 EI CSCD 北大核心 2016年第1期103-113,共11页 NATIONAL REMOTE SENSING BULLETIN
基金 教育部高等学校博士学科点专项科研基金资助(编号:20122121110007) 国家自然科学基金面上项目(编号:41271435)~~
关键词 区间二型模糊模型 不确定轨迹 高分辨率 遥感影像分割 次隶属函数 interval type-2 fuzzy model trajectory of uncertainty high resolution remote sensing image segmentation secondary membership function
  • 相关文献

参考文献20

  • 1Ahmed M N, Yamany S M, Mohamed N, Farag A A and Moriarty T.2002. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Ima- ging, 21 (3) : 193 - 199.
  • 2Begum S A and Devi O M. 2012. A Rough type-2 fuzzy clustering algo- rithm for MR image segmentation. International Journal of Computer Applications, 54 (4) : 4 - 11.
  • 3Bezdek J C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. New York : Plenum Press : 79 - 88.
  • 4Bruzzone L and Carlin L. 2006. A Muhilevel context-based system for classification of very high spatial resolution images. IEEE Transac- tions on Geoscience and Remote Sensing, 44 (9) : 2587 - 2600.
  • 5Cai W L, Chen S C and Zhang D Q. 2007. Fast and robust fuzzy c-means clustering algorithms incorporating local information for im- age segmentation. Pattern Recognition, 40 (3) : 825 - 838.
  • 6Chatzis S P and Varvarigon T A. 2008. A fuzzy clustering approach to- ward hidden Markov random field models for enhanced spatially con- strained image segmentation. IEEE Transactions on Fuzzy Systems, 16(5 ) : 1351 - 1361.
  • 7Hidalgo D, Castillo O and Melin P. 2009. Type-1 and type-2 fuzzy infer- ence systems as integration methods in modular neural networks for muhimodal biometry and its optimization with genetic algorithms. In- formation Sciences, 179 (13) : 2123 - 2145.
  • 8John R I, Innocent P R and Barnes M R. 2000. Neuro-fuzzy clustering of radiographic tibia image data using type 2 fuzzy sets. Information Sciences, 125(1/4):65-82.
  • 9Ju Z J and Liu H H. 2012. Fuzzy gaussian mixture models. Pattern Rec- ognition, 45 (3): 1146 -1158.
  • 10Karnik N N and Mendel J M. 2001. Centroid of a type-2 fuzzy set. Infor- mation Sciences, 132(1/4) : 195 -220.

二级参考文献13

  • 1杨勇,黄淑英,张锋.基于空间势函数加权的模糊C均值聚类分割算法[J].计算机工程,2007,33(13):191-193. 被引量:4
  • 2Karmakar G C, Dooley L S, Ageneric Fuzzy Rule-based Image Segmentation Algorithm[J]. Pattern Recognition Letters, 2002, 23(10): 1215-1227.
  • 3Eschrich S, Ke J, Hall L O, et al. Fast Accurate Fuzzy Clustering Through Data Reduction[J]. IEEE Trans. on Fuzzy Systems, 2003, 11(2): 262-270.
  • 4Krishnapuram R, Keller J. A Possibilistic Approach to Clustering[J]. IEEE Trans. on Fuzzy Systems, 1993, 2(1): 98-110.
  • 5Mendel J. Interval Type-2 Fuzzy Logic Systems Theory and Design[J]. IEEE Trans. on Fuzzy Systems, 2000, 8(5): 535- 550.
  • 6Davies D I, Bouldin D W. A Cluster Separation Measure[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1979, 2(1): 224-227.
  • 7BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[M].NY:Plenum Press,1981:309-321.
  • 8LEUNG S H,WANG Shi-lin.Lip image segmentation using fuzzy clustering incorporating an elliptic shape function[J].IEEE Trans on Image Processing,2004,13(1):51-62.
  • 9BESAG J.Spatial interaction and the statistical analysis of lattice systems[J].J Roy Statist Soc B,1974,36(2):192-236.
  • 10DERIN H,ELLIOTT H.Modeling and segmentation of noisy and textured images using Gibbs random fields[J].IEEE Trans Pattern Anal Machine Intell,1987,9(1):39-55.

共引文献3

同被引文献42

引证文献7

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部