期刊文献+

遥感影像CVA变化检测的CUDA并行算法设计 被引量:19

CUDA parallel algorithm for CVA change detection of remote sensing imagery
原文传递
导出
摘要 随着遥感影像数据量以及复杂程度的日益增加,遥感图像的快速处理成为实际应用过程中亟需解决的问题。为了实现遥感影像的实时变化检测,针对基于变化矢量分析CVA的变化检测算法,设计了一种基于统一计算设备构架CUDA的并行处理模型。首先利用地理空间数据提取库GDAL实现大数据量遥感影像的分块读取、操作和保存;其次将基于变化矢量分析的变化检测过程分为变化强度检测、映射表构建和变化方向检测,并借助CUDA C将变化矢量分析算法的3个步骤嵌入到CPU和GPU组成的异构平台上进行实验;最后利用该模型对不同数据量的遥感影像进行CVA变化检测并作对比分析。实验结果表明:与CPU串行相比,基于GPU/CUDA的遥感影像CVA的变化检测速度提高了10倍左右;在一定程度上,达到了实时变化检测的效果。 With the rapidly developing society,land use or cover change has gained considerable attention. Highly economic,practical,and efficient remote sensing technology has been used in various methods of land dynamic change detection. However,rapid image processing has become a problem with the increase in data volume and complexity in remote sensing. New complex algorithms that increase both computation volume and time have been proposed to achieve a high precision of change detection.Moreover,the Central Processing Unit( CPU) computing cells are limited and cannot meet real-time requirements. To achieve real-time change detection using remote sensing image,this paper designs a parallel processing model based on Compute Unified Device Architecture( CUDA),in reference to the CVA-based change detection algorithm.The model can be divided into the following steps. To make the general PC without the large cache process data,the model first uses Geospatial Data Abstraction Library to determine image block reading,block operation,and block saving. Second,CVA change detection is paralleled through three sub-processes: changing the magnitude detection,designing the index table,and changing the direction of detection. Then,the three sub-processes are embedded in CPU and Graphic Process Unit( GPU) through CUDA C. Finally,different sizes of multi-group images are studied with the same model to execute CVA change detection in consideration of the effect of image data volume and block size on the change detection efficiency. For comparison,the same group image data are also processed using Open MP on multi-core systems.In consideration of image data volume,the change detection speedup remains unchanged if the data volume is less than the total PC cache. Executing image block is already unnecessary. However,if the data volume is larger than the total PC cache,image block processing is needed to ensure that the cache is not out. Larger image block means more efficient change detection.The efficiency of the parallel computing of CVA-based change detection is increased 10 times in GPU than serial processing in CPU. However,Open MP is only about three times faster than serial processing in CPU. GPU is more capable in digital image processing than CPU.Change detection processing is serial between the block and image block,and processing is parallel in each image block. With enough cache,larger image block means higher degree of parallelization and change detection efficiency. Parallel operation integrated with CUDA effectively improves change detection based on CVA. To some extent,this operation reaches the effect of the real-time change detection.
出处 《遥感学报》 EI CSCD 北大核心 2016年第1期114-128,共15页 NATIONAL REMOTE SENSING BULLETIN
基金 江苏省测绘地理信息科研项目基金资助(编号:JSCHKY201412) 江苏省资源环境信息工程重点实验室开发基金资助项目(编号:JS201308) 中央高校基本研究业务费专项资金资助(编号:2013QNB11)
关键词 遥感影像 变化检测 变化矢量分析 并行计算 统一计算设备构架 remote sensing imagery change detection change vector analysis parallel computing compute unified device architecture
  • 相关文献

参考文献16

  • 1Asano S, Maruyama T and Yamaguchi "Y. 2009. Performance comparison of FPGA, GPU and CPU in image processing. IEEE International Conference on Field Programmable Logic and Applications. Prague: IEEE : 126 - 131.
  • 2方留杨,王密,李德仁.CPU和GPU协同处理的光学卫星遥感影像正射校正方法[J].测绘学报,2013,42(5):668-675. 被引量:32
  • 3Hu B F and Yang X. 2013. GPU-accelerated parallel 3D image thinning. 2013 IEEE 10th International Conference on High Per- formance Computing and Communications & 2013 IEEE Intemation- al Conference on Embedded and Ubiquitous Computing (HPCC_ EUC). Zhangjiajie: IEEE: 149- 152.
  • 4Kockara S, Halic T, Bayrak C. 2009. Real-time minute change detec- tion on GPU for cellular and remote sensor imaging. Advanced Infor- mation Networking and Applications Workshops, 2009. WAINA09. International Conference. Bradford: IEEE: 13- 18.
  • 5Lindholm E, Nickolls J, Oberman S and Montrym J. 2008. NVIDIA Tesla: a unified graphics and computing architecture. IEEE Micro, 28(2): 39-55.
  • 6Malila W A. 1980. Change vector analysis: an approach for detecting forest changes with Landsat//Burroff P G and Morrison D B, eds. Laboratory for Applications of Remote Sensing Symposia. West Lafa- yette, Indiana: Purdue University: 326 -335.
  • 7Mubasher M M, Farid M S, Khaliq A and Yousaf M M. 2012. A parallel algorithm for change detection. IEEE 2012 15th International Multi- topic Conference. Islamabad: IEEE: 201 - 208.
  • 8陶伟东,黄昊,苑振宇,杨柳,王结臣.基于GPU并行的遥感影像边缘检测算法[J].地理与地理信息科学,2013,29(1):8-11. 被引量:4
  • 9胡维.2011.多时相遥感影像变化检测并行系统设计与实现.武汉:华中科技大学.
  • 10肖汉,张祖勋.基于GPGPU的并行影像匹配算法[J].测绘学报,2010,39(1):46-51. 被引量:43

二级参考文献59

  • 1谭立勋,刘缠牢,李春燕.实时图像处理中Sobel算子的改进[J].弹箭与制导学报,2006,26(S1):291-293. 被引量:9
  • 2祝小勇,张过,秦绪文.国产光学卫星影像RPC制作[J].国土资源遥感,2009,21(2):32-34. 被引量:12
  • 3蒋艳凰,杨学军,易会战.卫星遥感图像并行几何校正算法研究[J].计算机学报,2004,27(7):944-951. 被引量:20
  • 4段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:365
  • 5摩尔的预言:唯有CU-DA才是终极的CPU(二)[EB/OL].[2008-07-28].http://space.itpub.net/14741601/viewspace-410810.
  • 6GPU是并行计算的高手[EB/OL].[2008-10-24].http:∥www.expreview.com/review/1224821886d10275_2.html.
  • 7NVIDIA. CUDA 2.0 for WINDOWS CUDA 2.0 Program ming Guide [EB/OL]. [2008-06-07]. http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0. pdf. 20.
  • 8PODLOZHNYUK V. Image Convolution with CUDA [EB/ OL]. [2007-01-06]. http://www. nvidia.com/object/cuda_ home. html.
  • 9HARRIS M. Optimizing Parallel Reduction in CUDA [EB/ OL]. [2007-11-08]. http://www. nvidia. com/object/cuda _home. html.
  • 10STONE J E, PHILLIPS J C, FREDDOLINO P L, et al. Accelerating Molecular Modeling Applications with Graphics Processors [J]. Journal of Computational Chemistry, 2007, 28(16):2618-2640.

共引文献83

同被引文献131

引证文献19

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部