HCMU度量的一个存在性定理和能量积分公式
An existence theorem and energy integral formula of HCMU metrics
摘要
HCMU度量是紧黎曼面上带奇点的extremal Khler度量.本文给出一个带锥奇点的非常曲率HCMU度量(non-CSC HCMU度量)的存在性定理,并讨论一般non-CSC HCMU度量的能量积分公式.
An HCMU metric is an extremal Khler metric with singularities on a compact Riemann surface. We prove an existence theorem of non-CSC HCMU metrics with conical singularities,and discuss the energy integral formula for general non-CSC HCMU metrics.
出处
《中国科学院大学学报(中英文)》
CSCD
北大核心
2016年第1期16-22,共7页
Journal of University of Chinese Academy of Sciences
基金
国家自然科学基金(11471308)资助
参考文献9
-
1Calabi E. Extremal Kihler metrics [ C ] // Seminar on differential geometry. Ann of Math Stud 102, Princeton: Princeton Univ. Press, 1982: 259-290.
-
2Chert X X. Extremal Hermitian metrics on Riemann surfaces [J]. Calc Var, 1999, 8:191-232.
-
3Chen X X. Obstruction to the existence of metric whose curvature has umbilical Hessian in a K-surface [ J ]. Communications in Analysis and Geometry, 2000, 8 (2): 267 -299.
-
4Chen Q, Chen X X, Wu Y Y. The structure of HCMU metric in a K-surface [ J ]. International Mathematics Research Notices, 2005,16 : 941-958.
-
5Chen Q, Wu Y Y. Character 1-form and the existence of an HCMU metric[Jl. Math Ann, 2011, 351(2) :327-345.
-
6Chen Q, Wu Y Y, Xu B. On one-dimensional and singular Calabi's extremal metrics whose Gauss curvatures have nonzero umbilical Hessians [ J ]. Israel Journal of Mathematics, 2015, 208(1) :385-412.
-
7Chen X X. Weak limits of Riemannian metrics in surfaces with integral curvature bound [ J ]. Calc Var, 1998, 6: 189-226.
-
8Wang G F, Zhu X H. Extremal Hermitian metrics on Riemann surfaces with singularities[ J]. Duke Math Journal, 2000, 104(2) :181-210.
-
9Lin C S, Zhu X H. Explicit construction of extremal Hermitian metric with finite conical singularities on S2 [ J ]. Communications in Analysis and Geometry, 2002, 10 ( 1 ) : 177-216.
-
1国金宇,吴英毅,魏志强.Riemann面上带cusp奇点的共形度量[J].中国科学院大学学报(中英文),2016,33(6):721-728.
-
2魏志强,吴英毅,国金宇.S^2上一类HCMU度量的存在性[J].中国科学院大学学报(中英文),2016,33(5):577-583.
-
3吴英毅.HCMU度量的特征1-形式(英文)[J].中国科学院研究生院学报,2009,26(2):185-193.
-
4魏靖,陈卿.关于局部对称极值度量的一个注记(英文)[J].中国科学技术大学学报,2009,39(12):1244-1247.
-
5张学山,许伯生,姜树民.锥型拟常曲率空间[J].烟台大学学报(自然科学与工程版),2001,14(4):235-238.