期刊文献+

运动传感器辅助的心电运动伪迹识别与消除方法 被引量:3

Motion sensor aided motion artifact recognition and removal method for ECG
下载PDF
导出
摘要 运动伪迹是动态心电监护的主要干扰,严重影响临床诊断的误诊率和漏诊率。为了改善动态心电信号质量,设计了一种运动传感器辅助的动态心电监护设备,采集V2导联心电信号,通过腹部运动传感器数据识别易引起心电运动伪迹的日常活动,标记运动伪迹位置,引入PQRST波特征点检测、自适应滤波算法消除运动伪迹。实际佩戴测试结果表明:此法可有效识别咳嗽、蹲、坐等日常运动,并有效消除此类运动产生的心电运动伪迹。 Motion artifact is the main interference of dynamic ECG monitoring and will affect fault diagnosis rate and missed diagnosis rate. In order to improve dynamic ECC signal quality, a motion sensor aided dynamic ECG monitoring system is designed, this system collects V2 lead ECG signal, through abdominal motion sensor data, identify patient ' s daily activity which easy to cause motion artifact of ECG motion, label position of motion artifact,introduce PQRST wave feature points detection and adaptive filtering algorithm to remove the motion artifact. The effectiveness of this algorithm is verified by actual ECG signals, daily activities such as coughing, squatting and sitting can be recognized and ECG motion artifact caused by such activities can be removed by this method effectively.
出处 《传感器与微系统》 CSCD 2016年第1期49-51,55,共4页 Transducer and Microsystem Technologies
基金 清华大学自主科研项目(2012087960)
关键词 心电图 运动伪迹 动态心电监护 运动传感器 动作识别 electrocardiogram (ECG) motion artifact dynamic ECG monitoring motion sensor activity recog-nition
  • 相关文献

参考文献6

  • 1Tong D A, Bartels K A, Honeyager K S. Adaptive reduction ofmotion artifact in the electrocardiogram [ C ] // Proc of the 24thEMBS/BMES Conference,Houston, Texas : IEEE,2002 : 1403 —1404.
  • 2Biswas U, Maniruzzaman M. Removing power line interferencefrom ECG signal using adaptive filter and notch filter [ C]//Procof ICEEICT 2014,Dhaka:IEEE ,2014:1-4.
  • 3Bao L,Intille S S. Activity recognition from user-annotated acce-leration data [ C ]// PERVASIVE 2004,Linz/Vienna: Springer,2004:1 -17.
  • 4Kozina S,Gjoreski H,Gams M,et al. Efficient activity recognitionand fall detection using accelerometers [ C]// Evaluating AALSystems Through Competitive Benchmarking: International Com-petitions and Final Workshop, EVAAL 2013 , Berlin, Heidelberg ;Springer,2013 : 13 —23.
  • 5Chen Y J,Ding J J,Huang C W,et al. ECG baseline extraction bygradient varying weighting functions [ C]//Proc of APSIPA 2013,Kaohsiung: IEEE ,2013:1 -4.
  • 6Chan C C,Chou W C,Chen C W,et al. Energy efficient diagnos-tic grade mobile ECG monitoring [ C]Proc of NEWCAS 2012,Montreal : IEEE ,2012 : 153 —156.

同被引文献25

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部