期刊文献+

面向低制造能耗的车间作业调度优化仿真 被引量:4

Optimization Simulation for Job-shop scheduling for Reducing Manufacturing Energy Consumption
下载PDF
导出
摘要 为了通过优化车间作业调度降低制造过程中的能耗,将车间机器资源的耗能过程划分为不同阶段。在对各阶段的能耗进行分析建模的基础上,建立了面向低制造能耗的车间作业调度问题模型,并在所建立模型的基础上,以最小化制造能耗为优化目标,采用模拟退火优化算法实现车间作业调度优化。按照编码设计规则随机生成车间作业调度方案,将随机生成的车间作业调度方案作为初始调度方案,采用模拟退火算法实现制造能耗优化,得到最优车间作业调度方案。通过仿真实验验证了所提出方法的可行性和有效性。 To reduce the energy consumption in the manufacturing process by optimizing job-shop scheduling, the process of the machines' energy consumption was divided into different stages. The energy consumption of each stage was analyzed and modeled. The job-shop scheduling problem model for manufacturing energy consumption was developed. On the basis of the developed problem model, minimizing manufacturing energy consumption was used as the optimization goal and a simulated annealing algorithm was adopted to optimize the job-shop scheduling. A job scheduling scheme was generated randomly according to the coding rule. The job scheduling scheme generated randomly was used as the initial solution, a simulated annealing algorithm was adopted to achieve the optimization of manufacturing energy consumption and the optimal job-shop scheduling scheme was obtained. The feasibility and effectiveness of the proposed method was verified by simulation experiments.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第1期114-120,共7页 Journal of System Simulation
基金 国家自然科学基金资助项目(51205150)
关键词 车间作业调度 制造能耗 可持续制造 模拟退火 job-shop scheduling manufacturing energy consumption sustainable manufacturing simulated annealing
  • 相关文献

参考文献2

二级参考文献22

  • 1徐新黎,王万良,吴启迪.改进计算能量函数下作业车间调度的混沌神经网络方法[J].控制理论与应用,2004,21(2):311-314. 被引量:3
  • 2杨晓梅,曾建潮.遗传算法求解柔性job shop调度问题[J].控制与决策,2004,19(10):1197-1200. 被引量:35
  • 3戴智杰,宋执环,宋春跃.基于遗传算法的浸染生产排缸策略[J].运筹与管理,2006,15(2):149-153. 被引量:15
  • 4VANCZA J,MARKUS A.An agent model for incentive-based production schedulingCJ].Computers in Industry,2000,43 (2):173-187.
  • 5WALSH W E,WELLMAN M P,WURMAN P R,et al.S-ome economics of market-based distributed scheduling[C]//Proceedings of the 18th IEEE International Conference on Distributed Computing Systems.Washington,D.C.,USA:IEEE,1998:612-621.
  • 6PAUL V,HADELI,BART S G,et al.MAS coordination and control based on stigmergy[JJ.Computers in Industry,2007,58(7):621-629.
  • 7YU X,RAM B.Bio-inspired scheduling for dynamic Job Shops with flexible routing and sequence-dependent setups[J].International Journal of Production Research,2006,44 (22):4793-4813.
  • 8XIANG W,LEE H P.Ant colony intelligence in multi-Agent dynamic manufacturing scheduling[J].Engineering Application of Artificial Intelligence,2008,21(1):73-85.
  • 9KARUNA H,PAUL V,MARTIN K,et al.Multi-Agent coordination and control using stigmergy[J].Computers in Industry,2004,53(1):75-96.
  • 10SHEN Weiming.Distributed manufacturing scheduling using intelligent agents[J].IEEE Intelligent Systems,2002,17(1):88-94.

共引文献16

同被引文献22

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部