期刊文献+

单载波频域均衡压电声透通信研究 被引量:4

Penetration-free ultrasonic data transmission using single-carrier frequency domain equalization
下载PDF
导出
摘要 研究了单载波频域均衡压电声透通信技术,将系统复杂度集中至介质一侧,并实现高速压电声透通信。分析了压电声透系统信道特性,通过变步长自适应滤波器,有效降低了信道响应的计算量并提高了收敛速度。提出一种改进的单载波频域均衡相关同步算法,可涵盖已有的多种同步方案并提出最佳同步的帧结构判决方案。在此基础上,结合训练序列信息和能量判决方法,提出了针对压电声透通信系统的综合同步算法。同时针对实际应用中的采样起始点偏移和频率偏差累积问题,提出了相应的优化策略。实验中采用中心频率为500 kHz的换能器,在4 cm厚钢板两侧可达到1.298 Mbps的最大传输速率,表明该算法能有效抑制码间干扰,降低误比特率。 A penetration-free ultrasonic data transmission algorithm using Single-Carrier Frequency Domain Equaliza- tion (SC-FDE) is proposed. The main advantage of the algorithm is to concentrate most system complexity to one side of metal barrier. Characteristics of penetration-free ultrasonic data transmission channel are considered, the computational complexity can be reduced, while rate of convergence can be accelerated by a variable step-size adaptive algorithm. A correlation synchronization algorithm is presented, which can be treated as a generalization of several existing synchro- nization algorithms. Schemes of combining this revised correlation synchronization algorithm with energy detection and training sequence information are also analyzed. System performance degradation is caused by starting point bias as well as accumulated carrier frequency offset. Corresponding optimization strategy is presented. Monte Carlo results demonstrate the effectiveness of the proposed SC-FDE penetration-free ultrasonic data transmission algorithm. The full system is capable of transmitting data at 5.298 Mbps through a 4-cm thick steel wall using transducers resonance at 500 kHz. Both severe inter-symbol interferences as well as bit-error rate during high-speed data transmission can be reduced.
出处 《声学学报》 EI CSCD 北大核心 2016年第1期115-124,共10页 Acta Acustica
基金 国家自然科学基金(11474306 11474307 11074217)资助
关键词 单载波频域均衡 通信技术 电声 同步算法 系统复杂度 自适应滤波器 信道特性 收敛速度 Adaptive algorithms Algorithms Bit error rate Carrier communication Data transfer Frequency allocation Frequency domain analysis Interference suppression Optimization Synchronization Ultrasonic applications
  • 相关文献

参考文献27

  • 1Roes M G L, Duarte J L, Hendrix M a Met al. Acoustic energy transfer: A review. IEEE Trans. Ind. Electron., 2013; 60(1): 242--248.
  • 2Yang Z T, Yang J S, Hu Y T. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2008; 55(11): 2493--2501.
  • 3余紫莹,吴鸣,许勇,杨军.压电声透通信的研究进展[J].应用声学,2013,32(5):419-424. 被引量:8
  • 4Kluge M, Becker T, Schalk Jet al. Remote acoustic power- ing and data transmission for sensors inside of conductive envelopes. Proc of IEEE Sensors, 2008:41--44.
  • 5Murphy T L. Ultrasonic digital communication system for a steel wall multipath channel: Methods and results. Ph.D. thesis, Rensselaer Polytechnic Institute, 2006.
  • 6Primerano R A. High bit-rate digital communication through metal channels. Ph.D. thesis, Drexel University, 2010.
  • 7Wanuga K, Bielinski M, Primerano R et al. High-data-rate ultrasonic through-metal communication. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2012; 59(9): 2051-2053.
  • 8Lawry T, Wilt K, Ashdown J et al. A high-performance ultrasonic system for the simultaneous transmission of dataand power through solid metal barriers. IEEE Trans. Ul- trason., Ferroelectr., Freq. Control, 2013; 60(1): 194--203.
  • 9Sari H, Karam G, Jeanclaude I. Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag., 1995; 33(2): 100 109.
  • 10Ashdown J, Wilt K, Lawry T et al. A full-duplex ultra- sonic through-wall communication and power delivery sys- tem. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2013; 60(3): 587 595.

二级参考文献32

  • 1GRAHAM D J, NEASHAM J A, SHARIF B S. Investigation of methods for data communication and power delivery through metals[J]. IEEE Trans. Ind. Eleclron., 2011, 58(10): 4972-4980.
  • 2GRAHAM D J, NEASHAM J A, SHARIF B S. High bit rate communication through metallic structures using electromagnetic acoustic transducers [C]. OCEANS 2009-EUROPE, 2009, Bremen: 1-6.
  • 3CONNOR D J, CUMMINGS G F, STAR M J. Acoustic transformer with non-piezoelectric core[P]. U.S. Patent, 5,594,705.1997-01-14.
  • 4HU Y, ZHANG X, YANG J, et al. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50(7): 773-781.
  • 5SHERRIT S, BADESCU M, BAO X Q, et al. Efficient electromechanical network models for wireless acoustic-electric feed-throughs [C]. Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems, 2005: 362-372.
  • 6SHERRIT S, DOTY B, BADESCU M, et al. Studies of acoustic-electric feed-throughs for power transmission through structures [C]. Proceedings of SPIE, 2006: 17102-17102.
  • 7YANG J. Piezoelectric transformer structural modeling - a review[J]. IEEE Transactions on Ultrasonics, Ferroelectries, and Frequency Control, 2007, 54(6): 1154-1170.
  • 8BAO X Q, BIEDERMAN W, SHERRIT S, et al. High-power piezoelectric acoustic-electric power feedthru for metal walls [C]. Proceedings of SPIE, 2008: 69300z-l-69300z-9.
  • 9WILT K 1L LAWRY T J, SCARTON H A, et al. Mechanical design implications on power transfer through thick metallic barriers using piezoelectric transducers [C]. Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition, 2010, Vancouver, British Columbia, Canada: 1-10.
  • 10WELLE R E Ultrasonic data communication system[P], U.S., 5,982,297. 1999-11-09.

共引文献7

同被引文献6

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部