期刊文献+

太阳能化学链燃烧的固体燃料蓄能分布式系统 被引量:1

A Solar Solid Fuel Distributed System Integrating Solar Heat Driven Chemical-Looping Combustion
原文传递
导出
摘要 提出了一种中温太阳能与化学链燃烧(CLC)整合的固体燃料蓄能新方法及冷热电联产(CCHP)新系统。以DME的Co基CLC为例,探究了变工况条件下蓄能对燃料化学能梯级利用与中温太阳热品位提升的作用,揭示了系统设计工况特性及全年热力性能,并比较了有蓄能和无蓄能时各自在四季典型日的性能规律。结果表明,有蓄能时年均太阳能净发电效率可达22.4%。本研究给出了一种中低温太阳能热化学固体燃料蓄能新方法。 We put forward a new method of solar solid fuel by integrating mid-temperature solar heat and DME-fuelled chemical-looping combustion(CLC),furthermore,combined this new method with a CCHP system.In this proposed method,the mid-temperature solar heat is used to drive the chemical-looping combustion of DME-CoO/Co,and then the solar heat is converted into the solar-solid fuel Co and stored.On the basis of our previous principle of the chemical energy cascade utilization,this method upgrades the energy level of the mid-temperature solar heat,and the exergy destruction in the combustion of DME is effectively utilized.As a result,the annual net solar-to-electricity efficiency is expected to reach 22.4%.With and without solar storage reaction of DME-CoO/Co,the behaviors of the thermodynamic performance are also given in typical days at the Four Seasons.Our study will provide a promising approach of solar-solid fuel storage,with high energy storage density and high net solar-to-electricity efficiency simultaneously.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第1期11-15,共5页 Journal of Engineering Thermophysics
基金 国家自然科学重点基金资助项目(No.51236008)
关键词 中温太阳能 化学链燃烧 太阳能固体燃料蓄能 mid-temperature solar energy chemical-looping combustion solar-solid fuel storage
  • 相关文献

参考文献11

  • 1SDH. Solar District Heating. Ranking List of European LargeScale Solar Heating Plants[EB/OL]. [2014-07-10]. www.solar-district-heating.eu.
  • 2Johnstone N, HagSi I, Popp D. Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts [J]. Environmental and Resource Economics, 2010, 45(1): 133 155.
  • 3Gil A, Medrano M, Martorell I, et al. State of the Art on High Temperature Thermal Energy Storage for Power en- eration. Part 1--Concepts, Materials and Modellization [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55.
  • 4Py X, Calvet N, Olives R, et al. Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants [J]. Journal of Solar Energy Engineering, 2011, 133(3): 031008.
  • 5Kuravi S, Trahan J, Goswami D Y, et al. Thermal Energy Storage Technologies and Systems for Concentrating So- lar Power Plants [J]. Progress in Energy and Combustion Science, 2013, 39(4): 285 319.
  • 6Fernandes D, Piti6 F, Cceres G, et al. Thermal Energy Storage: How Previous Findings Determine Current Re- search Priorities [J]. Energy, 2012, 39(1): 246-257.
  • 7Murthy M S, Raghavendrachar P, Sriram S V. Thermal Decomposition of Doped Calcium Hydroxide for Chemical Energy Storage [J]. Solar energy, 1986, 36(1): 53-62.
  • 8Agrafiotis C, Roeb M, Schmficker M, et al. Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Sys- tems for Thermochemical Storage of Solar Heat. Part 1: Testing of Cobalt Oxide-Based Powders [J]. Solar Energy, 2014, 102:189-211.
  • 9IPCC. Climate Change 2007: Synthesis Report [R]. IPCC, 2007.
  • 10Hong H, Han T, Jin H. A Low Temperature Solar Thermochemical Power Plant With CO2 Recovery Using Methanol-Fueled Chemical Looping Combustion [J]. Jour- nal of Solar Energy Engineering, 2010, 132(3): 031002.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部