期刊文献+

H_2/CO/空气贫燃预混火焰的临界熄灭条件研究 被引量:3

Critical Extinction Condition of Lean Premixed H_2/CO/Air Flames
原文传递
导出
摘要 通过详细数值计算在较宽H_2/CO比范围内研究了H_2/CO/空气贫燃层流预混对冲火焰的熄灭极限。结果表明:H_2/CO/空气预混火焰的熄灭拉伸率随当量比和燃料H_2含量的增加而增加。分析发现主要分支反应和主要终止反应的平衡和竞争是火焰熄灭的决定性因素,对于组分确定的合成气,引入火焰面上主要分支反应的反应速率ω_B与主要终止反应的反应速率ω_T的对数比值β=ln(ω_T)/ln(ω_B)作为火焰熄灭指数,熄灭时刻所有当量比火焰的β趋近一个常数β_(ext),β_(ext)为临界熄灭指数。β随着拉伸率的增加而增加,当β=β_(ext)时,火焰熄灭。β_(ext)略大于1,随着H_2含量的增加逐渐减小并趋近于1。 The extinction limits of laminar lean premixed opposed-jet counterflow flames were numerically studied using detailed description of chemistry model and mass transport over a wide-range of H2/CO ratio.Results indicate that the extinction stretch rate increases with the increasing H2content in the fuel.The flame extinction depends on the balance and competition between the main branching and terminating reactions.A extinction exponent,β,was defined as the logarithmic ratio between the reaction rate ofthe main terminating reaction ωT and the reaction rate of the main branching reaction ωB on the flame front,i.e.,β=ln(ωT)/ln(ωB).For a syngas with fixed composition,the β value approaches a constant βext,defined as the critical extinction exponent,at the near-extinction condition for various extinction equivalence ratios.The β value increases with the increasing stretch rate.When β=βext,the flame will extinguish.βext is slightly above1 for syngas flames,and decreases and gradually approaches 1 with the increasing H2 content in the fuel.
作者 张扬 张海
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第1期222-225,共4页 Journal of Engineering Thermophysics
基金 国家自然基金项目(No.51176095和No.51061130536)
关键词 合成气 预混气体 熄灭极限 化学动力学 熄灭指数 syngas premixed extinction limit chemical kinetics extinction exponent
  • 相关文献

参考文献16

  • 1Lieuwen T, Yang V, Yetter R. Synthesis Gas Combustion: Fundamentals and Applications [M]. CRC Press, 2009.
  • 2Zhang Q, Noble D R, Lieuwen T. Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures upon Lean Blowout [J]. Transactions of the ASME a Engineering for Gas Turbines and Power, 2007, 129(3): 688-694.
  • 3Law C K. Combustion Physics [M]. New York: Cambridge University Press, 2006.
  • 4Law C K, Zhu D L, Yu G. Propagation and Extinction of Stretched Premixed Flames [J]. Proceedings of the Com- bustion Institute, 1988, 21(1): 1419-1426.
  • 5Law C K. Dynamics of Stretched Flames [J]. Proceedings of the Combustion Institute, 1989, 22(1): 1381 1402.
  • 6Vagelopoulos C M, Egolfopoulos F N. Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide with Hydrogen, Methane, and Air [J]. Proceed- ings of the Combustion Institute, 1994, 25(1): 1317-1323.
  • 7Jackson G S, Sai R, Plaia J M, et al. Influence of H2 On the Response of Lean Premixed CH4 Flames to High Strained Flows [J]. Combustion and Flame, 2003, 132(3): 503-511.
  • 8Zhang Y, Qiu X, Li B, et al. Extinction Studies of Near-Limit Lean Premixed Syngas/Air Flames [J]. Inter- national Journal of Hydrogen Energy, 2013, 38: 16453- 16462.
  • 9Li S, Zhang Y, Qiu X, et al. Effects of Inert Dilution and Preheating Temperature On Lean Flammability Limit of Syngas [J]. Energy &: Fuels, 2014, 28(5): 3442-3452.
  • 10Lutz A E, Kee R J, Grcar J F, et al. OPPDIF: a Fortran Program for Computing Opposed-Flow Diffusion Flames [R]. Sandia National Laboratories Report, Livermore, CA (USA) 1997.

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部