期刊文献+

净水厂常规与深度处理工艺对饮用水生物稳定性控制研究 被引量:10

Study on the effects of conventional water treatment process and advanced water treatment process on biological stability in water treatment plant
下载PDF
导出
摘要 以东太湖原水和X净水厂为研究对象,选择了可同化有机碳(AOC)、可生物降解溶解性有机碳(BDOC)和细菌再生长潜力(Bacterial Regrowth Potential,BRP)为生物稳定性的评判指标,探讨了净水厂常规与深度处理工艺对水中生物稳定性的贡献。结果表明:各处理单元对AOC、BDOC和BRP有不同的去除效果,预臭氧、主臭氧和后加氯工艺会引起AOC、BDOC和BRP的升高;混凝沉淀、砂滤和BAC工艺对AOC、BDOC和BRP具有较好的去除效果;常规工艺出厂水中AOC比深度处理工艺平均低10.10%,BDOC与BRP均值分别高出43.38%与25.95%。因此,在运行中应注重混凝沉淀工艺和臭氧工艺的管理与控制。 In the current study,using the three indicators-assimilable organic carbon(AOC),biodegradable dissolved organic carbon(BDOC)and bacterial regrowth potential(BRP),the biological stability of the raw water from East Taihu Lake and the produced water from X drinking water treatment plant were studied to explore the impacts of conventional water treatment process and advanced water treatment process on water biological stability.The results showed that each process unit had different impacts on the removal of AOC,BDOC and BRP.Pre-ozonation,post ozonation and post chlorination increased the concentrations of AOC,BDOC and BRP.However,coagulation sedimentation,sand filtration and BAC process showed satisfying performance on the removal of AOC,BDOC and BRP.Compared with the water produced from advanced water treatment,the AOC concentration in water produced from conventional water treatment was 10.10%lower;but the BDOC and BRP concentrations were 43.38% and 25.95% higher.Thus,more attention should be paid to the management and control of coagulation,sedimentation and ozonation processes in operation.
出处 《给水排水》 CSCD 北大核心 2016年第1期7-12,共6页 Water & Wastewater Engineering
基金 国家水体污染控制与治理科技重大专项(2012ZX07403-001) 苏州科技局重点研究专项(S S201434)
关键词 饮用水 生物稳定性 可同化有机碳 生物可降解溶解性有机碳 细菌再生长潜力 Drinking water Biological stability Assimilable organic carbon Biodegradable dis solved organic carbon Bacterial regrowth potential
  • 相关文献

参考文献21

  • 1Pereira V J, Marques R, Marques M, et al. Free chlorine inac- tivation of fungi in drinking water sources. Water research, 2013, 47(2): 517~523.
  • 2Pruden A, Edwards M, Falkinham III J O. Research Needs for Opportunisitc Pathogens in Premise Plumbing. Denver, CO~ Water Research Foundation, 2013.
  • 3刘文君,吴红伟,张淑琪,王占生,樊康平,张弥.某市饮用水水质生物稳定性研究[J].环境科学,1999,20(2):34-37. 被引量:49
  • 4杨艳玲,李星,李圭白,张卿.饮用水生物稳定性控制指标探讨[J].给水排水,2005,31(2):12-16. 被引量:19
  • 5Dirk van der Kooij, visser A, Hijnen W A M. Determining the concentration of easily assimilable organic carbon in drinking water. JAWWA, 1982, 74(10): 540~545.
  • 6Dirk van der Kooij. Assimilable organic carbon as an indicator of bacterial regrowth. JAWWA, 1992, 84(2): 57~65.
  • 7LeChevallier M W, Shan NF, kaplan L A, et al. Development of a rapid assimilable organic carbon method for water. Appl and Environ Microbrol, 1993, 59(5):1526~1531.
  • 8Huck P M, Fedorak P M. Formation and removal of assimilable organic carbon during biological treatment. JAWWA, 1991, 83 (12) : 69~80.
  • 9Lethevalher M W, Schulz W, Lee R G. Bacterial nutrients in drinking water. Appl Environ Microbial, 1991, 57 (3): 857 ~862.
  • 10Escobar. I C, Randall A, Taylor J S. Bacterial growth in distri- bution systems: effect of assimilable organic carbon and biode- gradable dissolved organic carbon. Environ Scth tech, 2001, :35 (17):3442~3447.

二级参考文献53

共引文献117

同被引文献69

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部