期刊文献+

玛欣凯维奇函数与泊松核的一个新微分性质

On the Functions of Marcinkiewicz and Some New Differential Properties of Poisson Kernel
原文传递
导出
摘要 将Stein[On the functions of Littlewood-Paley,Lusin,and Marcinkiewicz,Trans.Amer.Math.Soc.,1958,88:430-466]中的玛欣凯维奇函数的逆向不等式推广到一般情形.主要结果是对于n-维欧几里得空间k-阶球面调和函数空间的任意一基底,得到玛欣凯维奇函数的一般性的逆向不等式,即存在不依赖于函数f正常数C_p,使得||f||_p≤C_pΣ_(j=1)~N=1||μ_j(f)||_p,其中{μ_j(f)}_(j=1)~N是f的由这些球面调和函数生成的玛欣凯维奇函数.此外,对于任意的n-变元的k-阶调和多项式Q(x)以及泊松核P_t(x),有Q(D)P_t(x)=C_n k(tQ(x))/((|x|)~2+t^2^(n+2k+1)/2). We generalize the inverse inequality of Marcinkiewicz function in Stein[On the functions of Littlewood-Paley,Lusin,and Marcinkiewicz,Trans.Amer.Math.Soc,1958,88:430-466]to general cases.The main result of this paper is that,for any basis of spherical harmonic functions of order k in n-dimensional Euclidean space,we obtain the general inverse inequalities for Marcinkiewicz function,i.e.there exist a constant C_p does not depend on / such that ||f||_p≤C_p Σ_(j=1)~N=1 ||μ_j(f)||_p,where{μ_j(f)}_(j=1)~N are the Marcinkiewicz functions of / generated by these spherical harmonic functions.Moreover,for any n-variable homogeneous harmonic polynomial Q(x) of order k,and the Poisson kernel P_t(x),we have Q(D)P_t(x) = C_n k(tQ(x))/((|x|)~2+t^2^(n+2k+1)/2).
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第1期1-10,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(61271012)
关键词 玛欣凯维奇函数 泊松核 向量值奇异积分算子 Marcinkiewicz function Poisson kernel vector-valued singular integral operator
  • 相关文献

参考文献8

  • 1Calderon A. P., On the theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc., 1950, 8:55 61.
  • 2Calderon A. P., Zygmund A., On the existence of certaun singular integrals, Acta Math., 1952, 88: 85-139.
  • 3Grafakos L., Classical and Moderu Fourier Analysis, China Machine Press, Beijing, 2004.
  • 4Mtiller C., Spherical Harmonics, Lecture Notes in Math. 17, Springer-Verlag, Berlin, 1966.
  • 5Stein E. M., On the functions of Littlewood Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 1958, 88: 430-466.
  • 6Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, New Jersey, 1970.
  • 7Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, New Jersey, 1968.
  • 8Zygmund A., On certain integrals, Trans. Arner. Math. Soc., 1944, 55: 170-204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部