期刊文献+

Zygmund空间上的微分复合算子 被引量:3

Composition Followed by Differentiation on the Zygmund Space
原文传递
导出
摘要 讨论Zygmund空间E={f∈H(D):sup_(z∈D)(l-|z|~2)|f″(z)|〈∞}上的微分复合算子DC_φ,这里C_φ是复合算子,D是微分算子.得到了DC_φ在Zygmund空间E和小Zygmund空间E_0上是有界算子与紧算子的充分必要条件. We consider linear product operator DC_φ acting on the Zygmund space E = {f∈ H(D):sup_(z∈D)(l-|z|~2)|f"(z)| ∞},where C_φ is the composition operator and D is the differentiation operator.The boundedness and compactness of the operator DC_φ on the Zygmund space E and the little Zygmund space E_0 are estabhshed in terms of the function theorectic property of the symbol φ.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第1期11-20,共10页 Acta Mathematica Sinica:Chinese Series
基金 福建省自然科学基金资助项目(2015J01005) 省属高校专项基金资助项目(JK2012010)
关键词 ZYGMUND空间 微分算子 复合算子 Zygmund space differentiation operator composition operator
  • 相关文献

参考文献21

  • 1Cowen C. C., Maccluer B. D., Composition Operator on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
  • 2Duren P., Theory of Hp Spaces, Academic Press, New York, 1970.
  • 3Hibschweiler R. A., Portnoy N., Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain Math., 2005, 35(3): 843-855.
  • 4Li S., Stevi S., Gerneralized composition operators on the Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 2008, 338(2): 1282 1295.
  • 5Li S., Stevi5 S., Products of Volterra type operator and composition operator from H and Bloch spaces to Zygmund spaces, J. Math Anal. Appl., 2008, 345(1): 40-52.
  • 6Li S., Stevi5 S., Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput., 2008, 206(2): 825-831.
  • 7Liu Y., Yu Y., Composition followed by differentiation between Hzc and Zygmund spaces, Complex. Anal. Oper. Theory, 2012, 6(1): 121-137.
  • 8Madigan K., Composition operators on analytic Lipschitz spaces, Proc. Amer. Math. Soc., 1993, 119(2): 465 473.
  • 9Madigan K., Matheson A., Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 1995, 347(7): 2679-2687.
  • 10Ohno S., Products of composition and differentiation between Hardy spaces, Bull. Austral. Math. Soc., 2006, 73(2): 235 243.

同被引文献29

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部