摘要
讨论Zygmund空间E={f∈H(D):sup_(z∈D)(l-|z|~2)|f″(z)|〈∞}上的微分复合算子DC_φ,这里C_φ是复合算子,D是微分算子.得到了DC_φ在Zygmund空间E和小Zygmund空间E_0上是有界算子与紧算子的充分必要条件.
We consider linear product operator DC_φ acting on the Zygmund space E = {f∈ H(D):sup_(z∈D)(l-|z|~2)|f"(z)| ∞},where C_φ is the composition operator and D is the differentiation operator.The boundedness and compactness of the operator DC_φ on the Zygmund space E and the little Zygmund space E_0 are estabhshed in terms of the function theorectic property of the symbol φ.
出处
《数学学报(中文版)》
CSCD
北大核心
2016年第1期11-20,共10页
Acta Mathematica Sinica:Chinese Series
基金
福建省自然科学基金资助项目(2015J01005)
省属高校专项基金资助项目(JK2012010)