期刊文献+

辛矩阵和四阶微分算子自共轭边界条件的基本型 被引量:2

Symplectic Matrix and Fundamental Forms of Self-Adjoint Boundary Conditions for Differential Operators of Order Four
原文传递
导出
摘要 给出了辛矩阵的定义,讨论了它的性质,并通过使用辛矩阵的方法研究四阶自共轭的边界条件,得到了四阶自共轭边界条件的基本型,从而使得其它各种自共轭的边界条件都可以通过基本型的辛变换得到. We give a new definition of symplectic matrix,and discuss its properties.Using methods of symplectic matrix for fourth order self-adjoint boundary conditions,we obtain the fundamental forms of self-adjoint boundary conditions,such that all other forms can be generated by the symplectic transformations of the fundamental form.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第1期47-56,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11161030 11561050) 内蒙古自治区研究生科研创新项目(14020202)
关键词 辛矩阵 微分算子 基本型 边界条件 symplectic matrix differential operators fundamental forms boundary conditions
  • 相关文献

参考文献9

  • 1Bailey P. B., Everitt W. N., Zettl A., The SLEIGN2 Sturm-Liouville code, ACM Trans. Math. Software, 2001, 27:143 192.
  • 2. Bognr J., Indefinite Inner Product Spaces, Springer-Verlag, New York, 1974.
  • 3Everitt W. N., Markus L., Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, American Mathematical Society, Mathematical Surveys and Monographs, Vol. 61, 1999.
  • 4Hao X., Sun J., Zettl A., Canonical forms of self-adjoint boundary conditions for differential operators of order four, J. Math. Anal. Appl., 2012, 387:1176 1187.
  • 5Kong Q., Zettl A., Eigenvalue of regular Sturm-Liouville problems, J. Diff. Equ., 1996, 131: 1-19.
  • 6Wang A., Sun J., Zettl A., An interesting matrix equation, Miskolc Mathematical Notes, 2009, 10:107 113.
  • 7Wang A., Sun J., Zettl A., The classification of self-adjoint boundary conditions: Separated, coupled, and mixed, J. Funct. Anal., 2008, 255:1554 1573.
  • 8Yao W., Zhong W., Symplectic Elasticity, Higher Education Press, Beijing, 2002 (in Chinese).
  • 9Zettl A., Sturm-Liouville Theory, American Mathematical Society, MathematicM Surveys and Monographs, Vol. 121, 2005.

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部