期刊文献+

振荡超奇性Hilbert变换的Sobolev有界性 被引量:1

Boundedness of Oscillatory Hyper-Hilbert Transform on Sobolev Spaces
原文传递
导出
摘要 主要研究R^n上沿曲线Γ(t)=(t^(p_1),t^(p_2),…,t^(p_n))的振荡超奇性Hilbert变换H_(n,α,β)=∫_0~1 f(x-Γ(t))e^(it-β)t^(-1-α),在Sobolev空间上的有界性,其中0<p_1<P_2<…<P_n,α>β>0.证明了对于0<γ<(nα)/((n+1))(p_1+α),当|1/p-1/2|<(β-(n+1)[α-(β+p_1)γ])/(2β)时,H_(n,α,β)是从L_γ~2(R^n))到L^2(R^n)的有界算子.特别地,当β≥(α-γp_1)/(γ+1/(n+1))等时,H_(n,α,β)是从L_γ~2(R^n)到L^2(R^n)的有界算子· We study the oscillatory hyper-Hilbert transform H_(n,α,β)f(x) = ∫_0~1 f(x-Γ(t))e^(it-β) t^(-1-α) dt,along the curve Γ(t) =(t^(p_1),t^(p_2),...,t^(p_n)),where 0p_1p_2… p_n and α β 0.For 0 γ (nα)/((n+1))(p_1+α),we prove that H_(n,α,β) is bounded from L_γ~p(R^n) to L^p(R^n) whenever |1/p-1/2| (β-(n+1)[α-(β+p_1)γ])/(2β),and that H_(n,α,β) is bounded from L_γ~2(R^n) to L^2(R^n) whenever β≥(α-γp_1)/(γ+1/(n+1)).
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第1期65-74,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11271330 11471288)
关键词 振荡超奇性Hilbert变换 SOBOLEV空间 插值 oscillatory hyper-Hilbert transform Sobolev spaces interpolation
  • 相关文献

参考文献1

二级参考文献6

  • 1Zielinski, M.: Highly Oscillatory Singular Integrals along Curves, Ph.D Dissertation, University of Wiscons- in-Madison, Madison WI, 1985.
  • 2Chandarana, S.: L^P-bounds for hypersingular integral operators along curves. Pacific J. Math., 175(2), 389-416 (1996).
  • 3Chandarana, S.: Hypersigular integral operators along space curves. Preprint.
  • 4Chen, J. C., Fan, D., Wang, M., et al.: LP bounds for oscillatory hyper-Hilbert transform along curves. Proc. Amev. Math. Soc., 136(9), 3145-3153 (2008).
  • 5Chen, Y. P., Ding, Y., Fan, D.: A parabolic singular integral operator with rough kernel. J. Aust. Math. Soe., 84(2), 163-179 (2008).
  • 6Stein, E. M.: Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N J, 1993.

共引文献6

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部