期刊文献+

根点自粘合后图的亏格分布

Genus Distribution of Graph Self-Amalgamations
原文传递
导出
摘要 利用删点、加边原理,多种乘法法则,自粘合定理给出了一个双根图在其中一个根点的度为任意大的情形下根点自粘合后图的亏格分布,推广了Gross在文[Genus distribution of graph amalgamations:self-pasting at root-vertices,Aust.J.Comb.,2011,49:19-38]中"两个根点度均为2"的类似结果. The genus distribution of a double-rooted graph whose one root has arbitrary degree after self-pasting at root vertices have been derived,by applying vertexdeleting,edge-addition theorem,multiple production rules and self-amalgamation theorem.And analogous results of "two roots are two-degree" in literature[Genus distribution of graph amalgamations:self-pasting at root-vertices,Aust.J.Comb.,2011,49:19-38]had been provided by Gross have been generalized.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第1期133-144,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11371133 11301169 11471106) 湖南省研究生科研创新项目(CX2014B193) 益阳市科技计划项目(2013JZ02) 湖南师范大学青年项目(11403)
关键词 亏格分布 自粘合 删点原理 加边原理 genus distribution self-amalgamation deleting vertex theory adding edges theory
  • 相关文献

参考文献1

二级参考文献5

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部