期刊文献+

基于服务模式的快速服务组合方法研究 被引量:1

Research on service pattern-based rapid service composition approach
下载PDF
导出
摘要 多数传统服务组合方法忽视了领域服务的特性,针对特定的领域服务上下文环境时无法进一步提高优化性能,对此提出一种基于模式的快速服务组合方法。分析了领域服务的特征和规律,提出了服务模式的概念。进而给出了一种基于模式的两阶段快速服务组合方法,该方法在第一阶段利用已有的服务模式,采用贪心覆盖策略对用户需求进行快速覆盖,第二阶段则采用原子服务满足第一阶段无法满足的需求。实验表明利用该方法能获得良好的效果和性能。 Most of traditional service composition approaches neglect the characteristics of domain business, so optimization performance cannot be further improved in specific service context. A service pattern-based fast service composition approach is proposed. Firstly, through analyzing the characteristics and regularity of domain business, the concept of service pattern is put forward. Then, a two-stage service pattern-based service composition approach is designed. In the first stage, the approach uses greedy covering strategy to cover user requirement quickly. In the second stage, atomic services are used to meet the requirement which cannot be covered in first stage. The experiments show that the approach can gain service solution quickly and effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第1期1-6,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.71171066) 哈尔滨市科技创新人才基金(No.2014RFQXJ146) 哈尔滨工业大学科研创新基金(No.HIT.NSRIF.2014068) 国家科技支撑计划项目(No.2013BAH06F04)
关键词 服务组合 服务模式 两阶段服务组合方法 贪心覆盖策略 service composition service pattern two-stage service composition approach greedy covering strategy
  • 相关文献

参考文献15

  • 1Leymann F,Roller D.Using flows in information integration[J].IBM System Journal,2002,41(4):732-742.
  • 2Ponnekanti S R.Fox A.SWORD:A developer toolkit for Web service composition[C]//Proceedings of the llth International World Wide Web Conference,Honolulu,Hawaii,USA,2002:83-107.
  • 3Piccinelli G.Service provision and composition virtual business communities[C]//Proceedings of IEEE-IRDS Workshop on Electronic Commerce,1999.
  • 4Mabrouk B,Beauche N,Kuznetsova S,et al.Qo S-aware service composition in dynamic service oriented environments[C]//Bacon J M,Cooper B F.Proceedings of Middleware 2009.Berlin,Heidelberg:Springer,2009:123-142.
  • 5Dustdar S,Schreiner W.A survey on Web services composition[J].International Journal of Web and Grid Services,2005(1):1-30.
  • 6Hamadi R,Benatallah B.A Petri Net-based model for Web service composition[C]//Proceedings of the 14th Australasian Database Conference on Database Technologies.Adelaide:ACM Press,2003.
  • 7Casati F,Ilnicki S,Jin Lijie,et al.Adaptive and dynamic service composition in eflow[C]//Proc of the International Conference on Advanced Information Systems Engineering.Berlin Heidelberg:Springer-Verlag,2000:13-31.
  • 8范小芹,蒋昌俊,方贤文,丁志军.基于离散微粒群算法的动态Web服务选择[J].计算机研究与发展,2010,47(1):147-156. 被引量:48
  • 9Zeng Liangzhao,Benatallah B,Ngu A,et al.Qo S-aware middleware for Web services composition[J].IEEE Trans on Software Engineering,2004,30(5):311-327.
  • 10Sheng Q Z,Qiao X,Vasilakos A V,et al.Web services composition:A decade’s overview[J].Information Sciences,2014,280:218-238.

二级参考文献15

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 3刘书雷,刘云翔,张帆,唐桂芬,景宁.一种服务聚合中QoS全局最优服务动态选择算法[J].软件学报,2007,18(3):646-656. 被引量:146
  • 4Zeng Liangzhao, Benatallah B, et al. QoS-aware middleware for Web services Composition [J]. IEEE Transn on Software Engineering, 2004, 30(5) : 311-326.
  • 5Shalil M, Walker D W, Gray W A. A framework for automated service composition in service-oriented architectures [G] //LNCS 3053: Proc of the ESWS 2004. Berlin: Springer, 2004:269-283.
  • 6Wan Shuehao, Wei Jun, Song Jingyu, et al. Developing a selection model for interactive Web services [C] //Proc of IEEE ICWS'06. Piscataway, NJ: IEEE, 2006:231-238.
  • 7Eberhart R, Shi Y. Particle optimization: Developments, applications and resources [C] //Proc of the Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2001:81-86.
  • 8Eberhart R, Kennedy J. A new optimizer using particle swarm theory EC] //Proc of the 6th Int Syrup on Micro Machine and Human Sc[ence. Piscataway: IEEE Service Center, 1995: 39-43.
  • 9Banks A, Vincent J, Anyakoha C. A review of particle swarm optimization. Part Ⅰ: Background and development [J]. Natural Computing, 2007, 6(4): 467-484.
  • 10Shi Y, Eberhart R. Parameter selection in particle swarm optimization [C] //Proc of the 7th Annual Conf on Evolution Computation. Berlin: Springer, 1998:591-601.

共引文献47

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部