期刊文献+

具有饱和项和毒素影响反应扩散模型的平衡态分析 被引量:1

Analysis of steady-states of reaction diffusion model with saturating terms and effects of toxic substances
下载PDF
导出
摘要 研究了具有饱和项和毒素影响的反应扩散模型的平衡态方程,在齐次Neumann边界条件下常数平衡解的分歧与稳定性。利用谱分析和分歧理论的方法,分别以r_1、r_2为分歧参数,讨论了系统在常数平衡解附近出现分歧现象;同时运用线性算子的扰动理论和分歧解的稳定理论给出分歧解的稳定性。 The steady-states of reaction diffusion model with saturating terms and effects of toxic substances is studied,the bifurcation and the stability of a reaction-diffusion system with homogeneous Neumann boundary are investigated by the method of spectral analysis and bifurcation theory. The bifurcation at the steady-state solutions is acquired by treating r1,r2 as bifurcation parameters. Moreover, some stability results of the bifurcation solutions are obtained by using perturbation theory of linear operators and stability theory of bifurcation solutions.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第1期7-11,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.11401356) 高等学校博士学科点专项科研基金(No.200807180004)
关键词 饱和项 毒素 谱分析 稳定性 分歧理论 saturating terms toxic substances spectral analysis stability bifurcation theory
  • 相关文献

参考文献6

二级参考文献58

  • 1向红,严克明,王柏岩.具有反馈控制的捕食-食饵模型的周期解[J].兰州交通大学学报,2005,24(4):154-156. 被引量:3
  • 2Dean A M. A simple model of mutualism[J]. Am Natural, 1987,121:409-417.
  • 3Graves W G, Peckham B, Pastor J. A bifurcation analysis of a differential equations model for mutualism[J]. Bulletin of Mathematical Biology, 2006,68 : 1851-1872.
  • 4Chen F, You M. Permanence for an integrodifferential model of mutualism[J]. Appl Math Comput, 2007, 186:30-34.
  • 5Brain M G.A mechanistic model of a mutualism and its ecological and evolutionary dynamics[J].Ecological Modcling,2005,187:413-425.
  • 6Graves W G,Peckham B,Pastor J.A bifurcation analysis of a differential equations model for mutualism[J].Bulletin of Mathematical Biology,2006,68:1851-1872.
  • 7Kar T K,Chaudhuri K S On non-selective harvesting of two competing fish species in the presence of toxicity[J].Ecological Modelling,2003,161:125-137.
  • 8Kar T K,Swarnakamal M.Influence of prey reserve in a prey-predator fishery[J].Nonlinear Analysis,2006,65:1725-1735.
  • 9Wu J H.Coexistence state for cooperative model with diffusion[J].Computers and Mathematics with Applications,2002,43:1279-1290.
  • 10Chen F D Permanence for the discrete mutualism model with time delays[J].Mathematical and Computer Modeling,2008,47:431-435.

共引文献18

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部