期刊文献+

适合多观测样本的基于LS-SVM的新分类算法 被引量:1

Novel LS-SVM based classification algorithm for multi-observation sets
下载PDF
导出
摘要 针对多观测样本的二分类问题,提出适合多观测样本的基于LS-SVM的新分类算法。每次分类中,待分类的模式使用多观测样本集进行表示,首先对多观测样本集的标签进行假设,将此假设条件作为LS-SVM中优化问题的约束条件,由此得到分类误差,通过比较两次假设下的分类误差确定多观测样本的类别。该方法无需提前训练获得分类器,而是同时利用已知标签样本和多观测样本集,充分利用同类样本在特征空间中连续分布的特点。最后通过三组实验验证了所提方法的有效性。 To solve the problem of binary classification based on multi-observation sets, a novel LS-SVM based classification algorithm for multi-observation sets is proposed. In each classification, the object is represented by a multi-observation set, and then it makes an assumption about the class of the multi-observation set. Adding the assumption condition to the constraints of optimization problems in LS-SVM, the class is determined by comparing the different classification errors,which are obtained on different assumptions about the class of the multi-observation set. The method does not require training a classifier before classifications, considerating the labeled samples and multiple observation samples simultaneously and taking advantage of continuity law of similar samples in the feature space. Experiments show that the proposed method is valid and efficient.
作者 李欢 王士同
出处 《计算机工程与应用》 CSCD 北大核心 2016年第1期113-119,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61272210) 江苏省自然科学基金(No.BK2011417 No.BK2011003) 江苏省"333"工程基金(No.BRA2011142)
关键词 模式识别 二分类 多观测样本 LS-SVM算法 pattern recognition binary classification multiple observation samples LS-SVM
  • 相关文献

参考文献23

  • 1Kim T K,Kittler J,Cipolla R.On-line learning of mutually orthogonal subspaces for face recognition by image sets[J].IEEE Transactions on Signal Processing,2010,19(4):1067-1074.
  • 2殷飞,焦李成,杨淑媛.基于子空间类标传播和正则判别分析的单标记图像人脸识别[J].电子与信息学报,2014,36(3):610-616. 被引量:6
  • 3袁暋,程雷,朱然刚,雷迎科.一种新的基于MMC和LSE的监督流形学习算法[J].自动化学报,2013,39(12):2077-2089. 被引量:8
  • 4黄运娟,李凡长.等谱流形学习算法[J].软件学报,2013,24(11):2656-2666. 被引量:9
  • 5Shakhnarovich G,Fisher J W,Darrel T.Face recognition from long-term observations[C]//Proceedings of European Conference on Computer Vision(ECCV),2002,3:851-868.
  • 6Arandjelovic O,Shakhnarovich G,Fisher J,et al.Face recognition with image sets using manifold density divergence[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),2005,1:581-588.
  • 7Cardinaux F,Sanderson C,Bengio S.User authentication via adapted statistical models of face images[J].IEEE Transactions on Signal Processing,2006,54(1):361-373.
  • 8Yamaguchi O,Fukui K,Maeda K,et al.Face recognition using temporal image sequence[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition,1998:318-323.
  • 9Sakano H,Mukawa N.Kernel mutual subspace method for robust facial image recognition[C]//Proceedings of the 4th International Conference on Knowledge-based Intelligent Engineering Systems and Allied Technologies,2000,1:245-248.
  • 10Wang R P,Shan S G,Chen X L,et al.Manifold-manifold distance with application to face recognition based on image set[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),2008:1-8.

二级参考文献203

  • 1Huang Kaizhu, Zheng Danian, Sun Jun, et al.. Sparse learning for support vector classification. Pattern Recognition Letters, 2010, 31(13): 1944-1951.
  • 2Zhang Kai and Kwok J T. Simplifying mixture models through function approximation. IEEE Transactions on Neural Networks, 2010, 21(4): 644-658.
  • 3Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods- Support Vector Learning, California, USA, 1999 185-208.
  • 4Suykens J A K and Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
  • 5Sch61kopf B, Smola A J, Williamson R C, et al.. New support vector algorithms. Neural Computation, 2000, 12(5): 1207-1245.
  • 6Burges C J C and Scholkopf B. Simplified support vector decision rules. In 13th International Conference on Machine Learning, Bari, Italy 1996:71 77.
  • 7Chang Chih-chung and Lin Chih-jen. LIBSVM: a library for support vector machines. Software available at http:// www.csie.ntu.edu.tw/cjlin/libsvm, 2001.
  • 8Frank A and Asuneion A. UCI machine learning repository Http://www.ics.uci.edu/-mlearn/ML Repostitory. html 2007.
  • 9Stauffer C. Minimally-supervised classification using multi- ple observation sets [ A ]. IEEE International Conference on Computer Vision(ICCV) , 2003:297-304.
  • 10Fukui K, Yamaguchi O. Face recognition using multi-view- point patterns for robot vision[ A]. International Symposi- um on Robotics Research, 2005,15 : 192-201.

共引文献163

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部