期刊文献+

基于约束知识的IP-MCMC-PF目标跟踪方法研究

Research on target tracking based on constraint knowledge IP-MCMC-PF
下载PDF
导出
摘要 针对粒子滤波算法在有干扰的目标跟踪中可能出现的粒子多样性减少和精度下降等问题,研究并实现了一种新的基于约束知识的IP-MCMC-PF目标跟踪方法。该方法首先通过约束知识提高粒子预测的准确性,并通过多链并行的IP-MCMC方法提高粒子的多样性,有效地解决粒子退化问题;在此基础上通过PN学习算法在线更新抽样粒子的抽样分布和检测器的训练样本,实现目标跟踪算法的在线学习,有效提高了复杂背景下目标跟踪的准确度和自适应性。实验结果表明,该方法在遮挡、形变、光照变化等多种干扰的情形下都具有很好的跟踪效果。 Particle filter algorithm for target tracking with interference may occur in the problem such as lower particle diversity and reduced precision. In allusion to this instance, a novel tracking method based on constraint knowledge is proposed. This method improves the precision of the particle prediction using constraint knowledge. The problem of the particle degeneration is effectively solved by improving the particle diversity with the parallel IP-MCMC method. On this basis,the proposed method realizes the online study algorithm using PN learning, which is used to update the sample distribution of particles and the training samples of the detector. The accuracy and adaptability of the tracking method under complex background is effectively improved. Experimental results show that the proposed method has good effect under the situation of various interference(e.g., shade, deformation, illumination change).
出处 《计算机工程与应用》 CSCD 北大核心 2016年第1期120-126,265,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075032) 中央高校基本科研业务费专项资金(No.2012HGCX0001)
关键词 粒子滤波 约束知识 IP-MCMC抽样 PN学习 particle filter constraint knowledge IP-MCMC sampling PN learning
  • 相关文献

参考文献17

  • 1Arulampalam M S,Maskell S,Gordon N,et al.Atutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 2汪荣贵,沈法琳,李孟敏.非线性系统状态突变下的非退化粒子滤波方法研究[J].中国科学技术大学学报,2012,42(2):140-147. 被引量:3
  • 3Tahk M,Speyer J L.Target tracking problems subject to kinematic constraints[J].IEEE Transactions on Automatic Control,1990,35(3):324-326.
  • 4Challa S,Bergman N.Target tracking incorporating flight envelope information[C]//Proceedings of the Third International Conference on information Fusion,2000.
  • 5Cheng Y,Singh T.Efficient particle filtering for road-constrained target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1454-1469.
  • 6Kyriakides I,Morrell D,Papandreou-Suppappola A.Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints[J].IEEE Transactions on Signal Processing,2008,56(3):937-948.
  • 7Papi F,Podt M,Boers Y,et al.Bayes optimal knowledge exploitation for hard-constrained target tracking[C]//Pro of the 9th IET Data Fusion and Target Tracking Conference,London,UK,2012.
  • 8Papi F,Bocquel M,Podt M,et al.Fixed-Lag Smoothing for Bayes optimal exploitation of external knowledge[C]//Pro of the 15th IEEE Int Conf on Information Fusion(FUSION),2012:463-470.
  • 9汪荣贵,李孟敏,吴昊,沈法琳.一种新型的基于自适应遗传算法的粒子滤波算法[J].中国科学技术大学学报,2011,41(2):134-141. 被引量:11
  • 10Zhao Z,Kumar M.An MCMC-based particle filter for multiple target tracking[C]//Pro of the 15th IEEE Int Conf on Information Fusion(FUSION),2012:1676-1682.

二级参考文献40

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部