期刊文献+

基于PCNN的迷宫路径搜索的评估函数优化研究

Research on evaluation function of path optimization search using PCNN
下载PDF
导出
摘要 在前人对PCNN模型的研究及应用的基础上,结合启发式的搜索策略——A*搜索策略,设计了基于改进型的PCNN迷宫智能优化算法,并将其应用解决实际迷宫问题。主要工作为:(1)通过对PCNN模型内在机理的研究,并根据PCNN的自身特点,选择合适的模型参数以适合求解迷宫最短路径问题。(2)选择与改进了的PCNN模型相结合的A*搜索算法,并证明该算法是可靠的,具有一定的自适应能力和所求得的解是最优解。(3)通过IEEE标准迷宫和MATLAB平台,对该算法的评估函数进行设计、仿真和验证等,不仅论证了(2)的结论,同时也论证了该算法的高效性。相关研究工作的实验结果表明,该算法不仅可以尽快找到目标,而且可以在相对少的搜索区域里得到相对满意的路径。 On the basis of previous research and application of PCNN model heuristic search strategy—A*search strategy,designs the intelligent optimization algorithm on the basis of improved PCNN and its application to solve the practical problems in maze. The main tasks:(1)Through the research of the intrinsic mechanism of PCNN model, select the appropriate model parameters to fit the solving maze shortest path problem.(2)Combining A*search algorithm, and prove that the algorithm is reliable, adaptive capacity and the obtained solution is optimal.(3)Through the IEEE standard maze and MATLAB platform, the algorithm evaluation function of its design, simulation and verification, etc. not only demonstrate the conclusion(2), as well as demonstrate the efficiency of the algorithm. The related experimental results of research work show that the algorithm can not only find the target as quickly as possible, but also can get relatively satisfactory path in the relatively few search area.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第1期151-156,共6页 Computer Engineering and Applications
基金 湖南省研究生科研创新项目(No.CX2011B216)
关键词 脉冲耦合神经网络(PCNN) 迷宫路径 优化算法 MATLAB平台 评估函数 Pulse Coupled Neural Network(PCNN) labyrinth path optimization algorithm MATLAB platform evaluation function
  • 相关文献

参考文献9

  • 1Stewart R D.Region growing with pulse-coupled neural networks:An alternative to seeded region growing[J].IEEE Trans on Neural Networks,2002,13(6):1557-1562.
  • 2Gu X.Image shadow removal using pulse coupled neural network[J].IEEE Trans on Neural Networkks,2005,16(3):692-698.
  • 3Yu B,Zhang L M.Pulse coupled neural networks for contour and motion matchings[J].IEEE Trans on Neural Networks,2004,15(5):1186-1201.
  • 4Zhao L.Pixel clustering by adaptive pixel moving and chaotic synchronization[J].IEEE Trans on Neural Networks,2004,15(5):1176-1185.
  • 5Eckhorn R,Reitboeck H J,Arndt M,et al.Feature liking via synchronization among distributed assemblies:Simulations of results from cat visual cortex[J].Neural Compute,1990,2(3):293-307.
  • 6Zadeh L A.Fuzzy sets[J].Information and Control,1965,8:238-253.
  • 7林俊,谷兵,杨晨,蔡婷婷.自适应泛洪的迷宫路径优化算法研究[J].计算机应用研究,2012,29(12):4472-4475. 被引量:3
  • 8龚道雄,刘翔.迷宫搜索算法的比较研究[J].计算机应用研究,2011,28(12):4433-4436. 被引量:6
  • 9刘翔,龚道雄.深度优先搜索算法和A*算法在迷宫搜索中的仿真研究[J].制造业自动化,2011,33(11):101-104. 被引量:8

二级参考文献18

  • 1莫毓昌,崔刚.基于泛洪的可靠广播算法分析[J].哈尔滨工业大学学报,2006,38(3):331-333. 被引量:1
  • 2Takayuki Goto,Takeshi Kosaka,and Hiroshi Noborio,"On the Heuristics of A* or A Algorithm in ITS and Robot PathPlanning,"Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,pp.1159-1166,Oct,2003.
  • 3Hiroshi Noborio,Keiichi Fhjimura,Yohei Horiuchi,"A Comparative Study of Sensor-Based Path-Planning Algorithms in an Unknown Maze,"Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems,2000,909-916.
  • 4http://www.astrolog.org/labyrnth.htm.
  • 5A.Francy Golda,S.Aridha,and D.Elakkiya,"Algorithmic Agent for Effective Mobile Robot Navigation in an Unknown Environment."Intelligent Agent & Multi-Agent Systems,2009,lAMA 2009.
  • 6http ://www. astrolog, org/labyrnth, htm[ EB/OL].
  • 7GOLDA A F, ARIDHA S, ELAKKIYA D. Algorithmic agent for effec- tive mobile robot navigation in an unknown environment[ C ]//Proc of International Conference on Intelligent Agent & Multi-Agent Systems. 2009 : 1-14.
  • 8GOTO T,KOSAKA T,NOBORIO H. On the heuristics of A * or an al- gorithm in ITS and robot path-planning [ C ]//Proc of IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems. 2003:1159- 1166.
  • 9NOBORIO H, FHJIMURA K, HORIUCHI Y. A comparative study of sensor-based path-planning algorithms in an unknown maze [ C ]// Pmc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2000:909-916.
  • 10李方敏,刘新华,旷海兰.无线传感器网络中一种高能效低延时的泛洪算法研究[J].通信学报,2007,28(8):46-53. 被引量:15

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部