期刊文献+

结合无符号Laplace谱特征的触觉步态识别算法 被引量:1

Algorithm on tactile gait recognition combined with signless Laplace spectrum feature
下载PDF
导出
摘要 针对单纯利用压力点分布特征进行触觉步态识别的不足,提出了一种结合无符号Laplace谱特征的动态触觉步态识别算法。利用足底压力数字化场地采集常速、快速和慢速三种情况下的触觉步态数据,生成足底压力分布图像,并根据足底解剖学的结构划分区域;以足底压力图像各区域为节点构造结构图,并采用无符号Laplace矩阵表示;通过对该矩阵进行奇异值分解(Singular Value Decomposition,SVD)获取谱特征,并结合形状特征得到触觉步态特征;选择"一对一"的支持向量机(Support Vector Machine,SVM)多分类方法,按照人在行走过程中不同的速度分别构造分类器,从而实现动态触觉步态的识别。实验结果表明该识别算法对不同速度样本数据的触觉步态识别正确率都较高。 Aiming at the lack of tactile gait recognition only by using the pressure distribution feature, an algorithm on dynamic tactile gait recognition combined with signless Laplace spectrum is put forward. Tactile gait data under constant,fast or slow speed is collected. Then plantar pressure images are obtained, which can be divided into regions according to the plantar anatomy structure. The structure graph is constructed with regions of plantar pressure image for the nodes. And it is expressed in signless Laplace matrix. The spectrum feature is gained by using singular value decomposition to the matrix. The one-against-one support vector machine classification method is employed. Then the classifiers are designed in different speed. So gait recognition is realized. Experimental results show the recognition accuracy of the algorithm is high in different speed.
作者 鲍文霞 梁栋
出处 《计算机工程与应用》 CSCD 北大核心 2016年第1期214-218,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61172127) 安徽省自然科学基金(No.1208085QF104) 安徽省高校优秀青年人才基金(No.2012SQRL017ZD) 安徽大学博士科研启动经费项目资助
关键词 无符号Laplace谱 足底压力分布图像 触觉步态识别 支持向量机 signless Laplace spectrum plantar pressure image tactile gait recognition Support Vector Machine(SVM)
  • 相关文献

参考文献15

  • 1Kale A,Sundaresan A,Rajagopalan A,et al.Identification of humans using gait[J].IEEE Transactions on Image Processing,2004,13(9):1163-1173.
  • 2Sarkar S,Phillips P,Liu Z,et al.The human ID gait challenge problem:data sets,performance,and analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):162-177.
  • 3Lemaire E D,Biswas A,Kofman J.Plantar pressure parameters for dynamic gait stability analysis[C]//Conf Proc IEEE Eng Med Biol Soc,2006:4465-4468.
  • 4Gurney J K,Kersting U G,Rosenbaum D.Between-day reliability of repeated plantar pressure distribution measurements in a normal population[J].Gait&Posture,2008,27(4):706-709.
  • 5Feng Y,Ge Y J,Song Q J.A human identification method based on dynamic plantar pressure distribution[C]//Proceedings of International Conference on Information and Automation,2011:329-332.
  • 6Pataky T C,Mu T T,Bosch K,et al.Gait recognition:highly unique dynamic plantar pressure patterns among104 individuals[J].Journal of The Royal Society,2012,9:790-800.
  • 7Yan Songhua.Effects of obesity on dynamic plantar pressure distribution in Chinese prepubescent children during walking[J].Gait&Posture,2013,37(1):37-42.
  • 8Moustakidis S,Theocharis J,Giakas G.Subject recognition based on ground reaction force measurements of gait signals[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,2008,38(6):1476-1485.
  • 9林尔东,姚志明,郑重,周旭,孙向阳,孙怡宁.一种改进的基于地面反作用力的步态识别方法[J].模式识别与人工智能,2011,24(3):353-359. 被引量:15
  • 10Yamakawa T,Taniguchi K,Asari K,et al.Biometric personal identification based on gait pattern using both feet pressure change[C]//Proceedings of Automation Congress,2008:1-6.

二级参考文献10

  • 1Murray M P. Gait as a Total Pattern of Movement. American Journal of Physical Medicine, 1967, 46 ( 1 ) : 290 - 332.
  • 2Zhao Guoying, Chen Rui, Liu Guoyin, et al. Amplitude Spectrum- Based Gait Recognition// Proc of the 6th International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004: 23 - 28.
  • 3Boulqouris N V, Chi Zhiwei. Gait Recognition Using Radon Transform and Linear Discriminant Analysis. IEEE Trans on Image Processing, 2007, 16(3) : 731 -740.
  • 4BenAbdelkader C, Cutler R G, Davis L S. Gait Recognition Using Image Self-Similarity. EURASIP Journal on Applied Signal Process- ing, 2004, (4) : 572 -585.
  • 5Han Ju, Bhanu B. Individual Recognition Using Gait Energy Image. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 (2) : 316 -322.
  • 6Li D, Pedrycz W, Pizzi N J. Fuzzy Wavelet Packet Based Feature Extraction Method and Its Application to Biomedical Signal Classifi- cation. IEEE Trans on Biomedical Engineering, 2005, 52 (6):1132 -1139.
  • 7Moustakidis S P, Theocharis J B, Giabas G. Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals. IEEE Trans on Systems, Man and Cybernetics, 2008, 38(6) : 1476 - 1485.
  • 8Xu Su, Zhou Xu, Sun Yining. A Genetic Algorithm-Based Feature Selection Method for Human Identification Based on Ground Reaction Force// Proc of the 1 st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai, China, 2009:665-670.
  • 9陶卿,姚穗,范劲松,方廷健.一种新的机器学习算法:Support Vector Machines[J].模式识别与人工智能,2000,13(3):285-290. 被引量:30
  • 10王海晖,彭嘉雄,李峰.基于遥感图像融合的目标检测算法[J].模式识别与人工智能,2001,14(4):454-457. 被引量:2

共引文献14

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部