期刊文献+

表面反应在半导体光催化水分解过程中的重要性 被引量:11

On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting
下载PDF
导出
摘要 利用光解水制氢将太阳能直接转化并储存为氢和氧的化学能是解决能源危机和环境污染的有效途径之一。光解水制氢过程中光生载流子在材料表面处发生的氧化还原反应尤为复杂,由于表面反应拥有较高的过电位以及缓慢的气体脱附速率而成为整个光解水过程中的速控步骤,因此得到了研究者的重点关注和研究。本文就催化剂表面反应过程调控的科学问题进行简要总结和展望。结合光催化水分解基本原理,(i)阐述了促进表面水分解反应速率的主要方法;(ii)介绍了表面助催化剂的作用和分类;(iii)讨论了材料表面态的钝化和保护层的包覆对表面水分解反应的影响。最后对光催化水分解表面反应研究的未来发展方向提出了若干设想。 One of the most appealing ways to resolve the worldwide energy crisis and environmental pollution is by converting solar energy into storable chemical energy as hydrogen through solar water splitting. The redox reactions of photogenerated charge carriers occurring on the surface of photocatalysts during the process of solar water splitting are particularly complex. Owing to the high reaction overpotentials and sluggish desorption kinetics of gas products, surface reaction is the rate-determining step in the solar water splitting process. Therefore, a great deal of attention has been focused on this specific research area. The recent advances and prospects for future directions regarding the importance of surface reactions for solar water splitting are presented. The main strategies to enhance the surface water splitting reaction kinetics are summarized. The roles and classifications of surface cocatalysts, as well as the effects of passivating the surface states and coating surface protective layers, are discussed by integrating the principles of photocatalysis. Prospects for the future development of surface reaction research are also proposed.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第1期2-13,共12页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(U1463205 21222604 51302185 21525626)资助项目~~
关键词 光催化水分解 表面反应 光催化剂 助催化剂 表面态 保护层 Photocatalytic water splitting Surface reaction Photocatalyst Cocatalyst Surface state Protective layer
  • 相关文献

参考文献2

二级参考文献70

  • 1田蒙奎,上官文峰,王世杰,欧阳自远.可见光响应光解水制氢的半导体光催化剂[J].化学进展,2007,19(5):680-688. 被引量:17
  • 2Penner S S. Steps towards the hydrogen economy[J]. Energy, 2006, 31(1): 33-43.
  • 3Turner J A. Sustainable hydrogen production [J]. Science, 2004, 305 (5686): 972-974.
  • 4Turner J A. A realizable renewable energy future[J]. Science, 1999, 285 (5428): 687-689.
  • 5Bowker M, Millard L, Greaves J, et al. Photocatalysis by Au nanoparti- cles: reforming of methanol[J]. Gold Bulletin, 2004, 37(3-4): 170-173.
  • 6Chiarello G L, Aguirre M H, Selli E. Hydrogen production by photo- catalytic steam reforming of methanol on noble metal modified TiO2[J]. Journal of Catalysis, 2010, 273(2): 182-190.
  • 7Li Z G, Wang Y X, Liu J W, et al. Photoeatalytic hydrogen production from aqueous methanol solutions under visible light over Na (BixTal~)O3 solid-solution [J]. International Journal of Hydrogen Energy, 2009, 34(1): 147-152.
  • 8Miwa T, Kaneco S, Katsumata H, et al. Photocatalytic hydrogen produc- tion from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite [J]. International Journal of Hydrogen Energy 2010, 35(13): 6554-6560.
  • 9A1-Mazroai L S, Bowker M, Davies P, et al. The photocatalytic reforming of methanol[J]. Catalysis Today, 2007, 122(1): 46-50.
  • 10Wu G P, Chen T, Zong X, et al. Suppressing CO formation by anion ad- sorption and Pt deposition on TiO2 in H2 production from photocatalytic reforming of methanol[J]. Journal of Catalysis, 2008, 253(1): 225-227.

共引文献3

同被引文献102

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部