期刊文献+

部分水解聚丙烯酰胺与蠕虫状胶束在微米级毛细管中的驱替粘度(英文) 被引量:3

In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries
下载PDF
导出
摘要 部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驱替液的增稠剂,表面活性剂在一定的条件下可以通过自组装形成蠕虫状胶束,具有与高分子相似的增稠的作用。本文在半径为1–10μm的毛细管中,分别考察了HPAMs与蠕虫状胶束的微观驱替行为,研究结果表示毛细管内腔的尺寸限制了这些非牛顿流体的增稠作用。随着毛细管半径的减小,聚合物溶液的剪切变稀越剧烈,甚至从非牛顿流体转变为牛顿流体的流体行为。结合驱替研究和超滤、电镜的结果,证明了高分子的缠绕结构在毛细管中已被破坏。通过对比驱替数据,蠕虫状胶束在毛细管中能够更大程度地保留宏观的粘度,我们提出表面活性剂能够通过自组装修复被破坏的缠绕结构,比高分子聚合物在微观有限空间中有更好的增稠能力。 Hydrolyzed polyacrylamides (HPAMs) are shear-thinning polymers and have wide application in enhanced oil recovery (EOR), whereas worm-like micelles (WLMs) are known as "living polymers", which can be constructed by the self-assembly of surfactant molecules. Here, a series of experiments were conducted on the fluid behavior of HPAMs and worm-like micelles in microscale capillaries with radii from 1 to 10 pro. The results show that the size of capillary has a decisive effect on the in-situ viscosity of the polymer aqueous phase. It was observed that the shear thinning effect of HPAMs is more pronounced in smaller size of capillaries, where the non-Newtonian polymer flow turns into the Newtonian flow. Evidences from filtration with a microporous filter and transmission electron microscopy (TEM) reveal that the polymer network was broken down when entering into the capillary. Conversely, WLMs can maintain their bulk viscosity to a wide extent. We assume that surfactant molecules may reassemble their aggregates and recover their network in-situ. The results suggest that WLMs have a much lower viscosity, but display similar thickening power compared with large polymers in the low or ultra-low permeability reservoirs.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第1期365-372,共8页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(21573164,21273165) Petro China Changqing Oilfield Co.~~
关键词 微米级毛细管 驱替粘度 部分水解聚丙烯酰胺 蠕虫状胶束 毛细管压力 Micro-scale capillary flows In-situ viscosity HPAMs Worm-like micelles Capillary pressure
  • 相关文献

参考文献29

  • 1Lake, L. Enhanced Oil Recovery; Prentice Hall: New Jersey, 1989; pp 2-16, 43-92, 317-353.
  • 2Buchgraber, M.; Clemens, T.; Castanier, L. M.; Kovscek, A. R. SPE Reservoir Eval. Eng. 2011, 14, 269. doi: 10.2118/122400-PA.
  • 3Vizika, O.; Avraam, D. G.; Payatakes, A. C. J. Colloid Interface Sci. 1994, 165, 386. doi: 10.1006/jcis.1994.1243.
  • 4Jackson, G. T.; Balhoff, M. T.; Huh, C.; Delshad, M. J. Pet. Sci. Eng. 2011, 78, 86. doi: 10.1016/j.petrol.2011.05.007.
  • 5Zhang, J.; Wang, S.; Lu, X.; He, X. Pet. Sci. 2011, 8, 79. doi: 10.1007/s12182-011-0118-0.
  • 6Chauveteau, G. J. Rheol. 1982, 26, 111. doi: 10.1122/1.549660.
  • 7Gramain, P.; Myard, P. Macromolecules 1980, 14, 180.
  • 8Darwish, M. I. M.; McCray, J. E.; Currie, P. K.; Zitha, P. L. J. Groud Water Monitoring & Remediation 2003, 23, 92.
  • 9Wang, W.; Yue, X.; Chen, Y. J. Dispersion Sci. Technol. 2013, 34, 639. doi: 10.1080/01932691.2012.686246.
  • 10Gao, H. W.; Burchfield, T. E. SPE Reservoir Eng. 1995, 10, 129. doi: 10.2118/25453-PA.

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部