期刊文献+

教育可计算化的理论模型与分析框架 被引量:6

The Theoretical Model and Analytical Framework of Computability in Education
下载PDF
导出
摘要 信息技术在教育中的广泛应用,使得教育信息已不再是一种简单的视觉和感官内容,更成为一种可捕捉、可量化、可传递的教育数据,基于数据分析的学习指导已成为个性化教育的一个重要特征。文章从发展的视角界定教育可计算化的内涵;依据现代学习理论,分析教育系统中各要素之间的相互关系,梳理出行为系统学习模型、认知系统学习模型、学习生态系统学习模型;针对不同类型的教育数据设计与之相符合的教育算法,开发(或选择)相应的计算工具,形成具有操作特征的教育可计算化分析框架。 With the extensive use of Information Technology tools in education, educational information cannot be simply considered as visual and sensory content. It becomes educational data that can be captured, quantified, and transmitted. Learning guide based on data analysis has become an important feature of personalized learning. In this paper, the authors define the meaning of computability in education from a developmental perspective. Referring to learning theories, the authors analyze the inter- relationship among the elements of educational system, and identify three computational models: the behavior-system model, the cognition-system model, and the learning eco-system model. Aiming at different types of educational data, the authors also discuss the design of corresponding educational algorithm, the development (or selection) of computing tools, and an operational analytical framework of computability in education.
作者 祝智庭 李锋
出处 《电化教育研究》 CSSCI 北大核心 2016年第1期5-11,共7页 E-education Research
基金 全国教育科学规划课题"十二五"规划2014年立项课题"智慧环境学习构建与应用研究"(课题编号:BCA140051)
关键词 教育可计算 理论模型 分析框架 Computability in Education Theoretical Model Analytical Framework
  • 相关文献

参考文献12

  • 1维克托·迈尔-舍恩伯格,肯尼思·库克耶著.大数据时代-生活、工作与思维的大变革[M].盛杨燕,周涛译.杭州:浙江人民出版社,2013:2-4.
  • 2Margaret E.Gredier.学习与教学-从理论到实践[M].张奇,等译.北京:中国轻工业出版社,2007:103.
  • 3Clark,L..Hull, Drive Reduction Theory:Application and Priciples [EB/OL].[2014-10-03]. http://www.instructionaldesign.org/theories/ drive-reduction.html.
  • 4Huitt,W.. Classroom Instruction[EB/OL].[2014-10-07]. http://www.edpsycinteractive.org/topics/instruct/instruct.html.
  • 5George Siemens.Connectivism :A I-aming Theory for the Digital Age[J].Instructional Technology & Distance Learning, 2005,2 (1) :3-10.
  • 6王佑镁,祝智庭.从联结主义到联通主义:学习理论的新取向[J].中国电化教育,2006(3):5-9. 被引量:240
  • 7Sage Briggs. Big Data in Education: Big Potential or Big Mistake? [EB/OL]. [2014-11-10]. http://www.opencolleges.edu.au/informed/ features/big-data-big-potential-or-big-mistake/.
  • 8Mill Davis, Semantic Wave 2008 Report Industry Roadmap to Web 3.0[DB/OL].[2014-08-10]. http://www.docin.coin/p-151228477.html.
  • 9梅雷迪斯·D 高尔 等.教育研究方法导论[M].南京:江苏教育出版社,2002.275-276.
  • 10C.Romero,S.Ventura.Educational Data Mining:A Survey From 1995 to 2005[J].Expert Systems With Applications,2007, (33) : 125-146.

二级参考文献11

  • 1戴维·H·乔纳森.学习环境的理论基础[M].上海:华东师范大学出版社,2002..
  • 2莱斯利·P·斯特弗 杰里·盖尔 高文 徐斌燕译.教育中的建构主义[M].上海:华东师范大学出版社,2002.15,17,21,25.
  • 3杜·舒尔茨.现代心理学史[M].北京:人民教育出版社,1981..
  • 4George Siemens. Connectivism: A Learning Theory for the Digital Age [J].Instructional technology &distance learning, 2005, 2(1):3-10.
  • 5Morris L.Bigge,Samuel S.Shermis.学给教师的学习心理学[M].北京:中国轻工业出版社,2005.32.
  • 6邓铸.文化分裂及对当代认知研究范型的反思[J].南京师范大学学报,2001,(5):91-97.
  • 7Andy Clark &Rudi Lutz (Eds). Connectionism in context [M].New York: Springer - Verlag, 1992.
  • 8Philip T. Quinlan. Connectionism and Psychology: Psychological Perspective on New Connectionist Research [M].New York:Harvester Wheatsheaf, 1991.
  • 9George Siemens &Wang Youmei.Q&A on connectivism[ED/OB].http://www2.wznc.zj.cn/physics/et/courselog/index.asp,2005-10-20.
  • 10雷钠特·N·凯恩,杰弗里·凯恩.创设联结:教学与人脑[M].上海:华东师范大学出版社,2004.3.

共引文献270

同被引文献85

引证文献6

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部