期刊文献+

一种改进的核模糊聚类算法 被引量:2

Improved Fuzzy Kernel C-means Clustering Algorithm
下载PDF
导出
摘要 针对核模糊C-均值聚类算法中隶属度的计算特点,提出了一种改进的核模糊C-均值算法。改进后的算法是,在更新对象类的隶属度之前先判断对象是否可能属于该类。如果对象可能属于该类,则为其分配一个大于0的隶属度,否则直接将其隶属度置为0。针对不同测试数据集的实验结果表明,改进后的核模糊C-均值算法提高了聚类效果,是一种可行有效的算法。 According to the calculation feature of membership degree in fuzzy kernel c-means algorithm, an improved fuzzy kernel c-means algorithm is proposed. The new algorithm judges whether it is possible for the object to belong to the class before updating the membership degree. If the object is likely to belong to the class, the membership degree will be set as a positive number. Otherwise, the membership degree should be zero. The experiments show that the new algorithm improves the clustering result and it is a feasible and effective algorithm.
作者 郑超 徐恬
出处 《软件导刊》 2016年第1期40-42,共3页 Software Guide
关键词 模糊C-均值 聚类算法 隶属度 Fuzzy Kernel C-means Clustering Algorithm Membership Degree
  • 相关文献

参考文献10

  • 1HUANG Z,NG MA. Fuzzy k-modes algorithm for clustering cate- gorical data[J]. IEEE Trans on Fuzzy Systems, 1999,7 (4) : 446- 452.
  • 2GEORGE PETERS. Some refinements of rough k-means clustering [J]. Pattern Recognition, 2006,39(8) ; 1481-1491.
  • 3J C BEZDEK. Pattern recognition with fuzzy objective function al gorithms[M]. New York :Plenum,NY, 1981 : 150-151.
  • 4伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 5GIROLAMI M. Mercer kernel based clustering in feature space[J]. IEEE Trans on Neural Networks, 2002,13 (3) : 780-784.
  • 6张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 7XU R, WUNSCH D C. Survey of clustering algorithms[J]. IEEE Trans on Neural Networks,2005,16(3) :645-678.
  • 8KIM D W, LEE K Y, LEE D. Evaluation of the performance of clustering algorithms in Kernel-Induced feature space[J]. Pattern Recognition ,2005(38) :607-611.
  • 9BLAKE C L,MERZ C J. UCI repository of learning datahases[EB/ OL]. http://www, ics. uei. eud/mlearn/MLRepository, html.
  • 10XIE X L, BENI G. A validity method for fuzzy clustering[J]. IEEE Trans. PAM1,1991,13(8) : 841-847.

二级参考文献12

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100

共引文献240

同被引文献8

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部