期刊文献+

稀疏表示的特征选择方法在人脸性别和种族识别中的应用 被引量:3

APPLYING SPARSE REPRESENTATION-BASED FEATURE SELECTION TO FACE RECOGNITION FOR GENDER AND RACE
下载PDF
导出
摘要 针对人脸性别和种族识别中出现的特征冗余问题,提出一种基于稀疏表示的特征选择方法 SRFS(Sparse Representation based Feature Selection),构建了以区分类别为核心的特征选择框架模型。该模型将样本的特征空间的线性组合映射到不同类标所标记的类别,利用截断牛顿迭代法求解模型的非负稀疏解,进而通过稀疏值从特征空间中选择类区分度大且信息丰富的特征子集。通过实验,与一些比较经典的特征选择方法 Fisher Score、mRMR进行比较,验证了该方法的有效性,能够选择有效的特征,不仅降低特征的维数,而且获得了较高的识别率。 Aiming at the problem of feature redundancy in face recognition for gender and race, we propose a sparse representation-based feature selection method (SRFS) and build a feature selection framework model which takes the category differentiation as the core. The model maps the linear combination of sample' s feature space onto those categories marked by different class labels, and utilises the truncated Newton iteration method to obtain the nonnegative sparse solution, and then selects the feature subset with big differentiation and rich information from feature space by sparse values. Through experiments the SRFS is compared with these rather typical feature selection methods such as Fisher Score and mRMR, and is verified its effectiveness. SRFS can select effective feature subset, apart from reducing the dimensions of feature, it also achieves higher recognition rate.
出处 《计算机应用与软件》 CSCD 2016年第1期138-141,155,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61170155)
关键词 特征选择 性别识别 种族识别 稀疏表示 Feature selection Gender recognition Race recognition Sparse representation
  • 相关文献

参考文献1

二级参考文献36

  • 1宣国荣,柴佩琪.基于Chernoff上界的特征选择[J].模式识别与人工智能,1996,9(1):26-30. 被引量:2
  • 2刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 3宣国荣,柴佩琪.基于巴氏距离的特征选择[J].模式识别与人工智能,1996,9(4):324-329. 被引量:16
  • 4Wiener E., Pedersen J.O., Weigend A.S.. A neural network approach to topic spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, 1995, 317~332
  • 5Haykin Smon. Neural Networks: A Comprehensive Foundation. Second Edition. Beijing: Tsinghua University Press, 2001
  • 6Scholkopf B., Smola A., Mulle K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Max-Planck-Institute, Germany: Technical Report No. 44, 1996
  • 7Yang Jian, Frangi Alejandro F., Yang Jing-Yu, Zhang David, Jin Zhong. KPCA plus lda: A complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230~244
  • 8Yang Yi-Ming. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1(1~2): 69~90
  • 9Sebastiani F.. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1~47
  • 10Lewis D.. Reuters Collection. http://www.research.att.com/~lewis/reuters21578.html

共引文献43

同被引文献10

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部