期刊文献+

结合线性形状特征与模糊连接度的三维CT图像肺裂检测

DETECTION OF PULMONARY FISSURE IN 3D CT IMAGES BY COMBINING LINEAR SHAPE FEATURES AND FUZZY CONNECTEDNESS
下载PDF
导出
摘要 针对三维CT图像中噪声、密度分布不均匀等因素造成的肺裂检测难题,提出一种线性形状特征与模糊连接度相结合的检测方法。首先,模仿放射科医生的读片方式,利用肺裂在互相垂直的2D切片中呈高亮度线形结构并被低密度肺实质包裹的特点,定义窄条微分(DoS)滤波器用于图像增强;然后,指定3D空间中感兴趣区域内一点作为种子点,根据增强后肺裂图像的灰度均匀性与灰度差值特征来构造亲和力函数以计算种子点与其他体素之间的模糊连接度,再通过选取合适的阈值对模糊连接度进行阈值分割;最后,通过基于形态学的后处理来移除分支点,并由连接元分析以去除粘黏在肺裂周围的无关组织以得到最终完整的肺裂检测结果。临床数据实验和人工定义金标准验证的结果表明,该方法可对肺裂进行较准确、有效的检测。 Considering the difficulty in pulmonary fissures detection caused by the factors such as noise and intensity inhomogeneity in 3D CT images, we propose a detection method which combines linear shape features with fuzzy connectedness. First, it imitates the way of the radiologist reading slices, and defines a derivative of stick (DoS) filter for images enhancement by utilising the feature of pulmonary fissures that in mutually perpendicular 2D fissure slices they show the high bright linear structures and are wrapped by low-density lung parenchyma; Then, it assigns a specific point within the region of interest in 3D space as the seed, constructs the affinity function according to intensity homogeneity and intensity difference features of the enhanced pulmonary fissures image to calculate the fuzzy connectedness between the seed and other voxel. Besides, it segments the fuzzy connectedness by choosing an appropriate threshold; Finally, it removes the branch points through morphology-based post-processing operation and by connected component analysis it eliminates non-fissure tissues adhering around the pulmonary fissure so as to obtain an eventually complete pulmonary fissure detection result. The clinical data experiment and the artificially defined gold standard verification result show that the method can detect pulmonary fissures more accurately and effectively.
出处 《计算机应用与软件》 CSCD 2016年第1期167-170,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61172160) 湖南省自然科学常德联合基金项目(12JJ9019)
关键词 肺裂检测 窄条微分滤波器 模糊连接度 CT图像 Pulmonary fissure detection Derivative of stick filter Fuzzy connectedness CT image
  • 相关文献

参考文献14

  • 1Kuhnigk J M,Dicken V,Bornemann L,et al.Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans[J].IEEE Transactions on Medical Imaging,2006,25(4):417-434.
  • 2Klinder T,Wendland H,Wiemker R.Lobar fissure detection using line enhancing filters[C]//SPIE Medical Imaging.International Society for Optics and Photonics.Florida,USA:SPIE Proceedings,2013:86693C-86693C-8.
  • 3Wiemker R,Bülow T,Blaffert T.Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data[C]//International Congress Series.Elsevier,2005:1121-1126.
  • 4Wei Q,Hu Y,Macgregor J H,et al.Automatic recognition of major fissures in human lungs[J].International journal of computer assisted radiology and surgery,2012,7(1):111-123.
  • 5Ukii S,Reinhardt J M.Anatomy-guided lung lobe segmentation in Xray CT images[J].IEEE Transactions on Medical Imaging,2009,28(2):202-214.
  • 6Van Rikxoort E M,Van Ginneken B,Klik M,et al.Supervised enhancement filters:application to fissure detection in chest CT scans[J].IEEE Transactions on Medical Imaging,2008,27(1):1-10.
  • 7Zhang L,Hoffman E A,Reinhardt J M.Atlas-driven lung lobe segmentation in volumetric X-ray CT images[J].IEEE Transactions on Medical Imaging,2006,25(1):1-16.
  • 8Wang J,Betke M,Ko J P.Pulmonary fissure segmentation on CT[J].Medical Image Analysis,2006,10(4):530-547.
  • 9Xiao C,Staring M,Wang J,et al.A derivative of stick filter for pulmonary fissure detection in CT images[C]//SPIE Medical Imaging.International Society for Optics and Photonics.Florida,USA:SPIE Proceedings,2013:86690V-86690V-9.
  • 10Udupa J K,Samarasekera S.Fuzzy connectedness and object definition:theory,algorithms,and applications in image segmentation[J].Graphical models and image processing,1996,58(3):246-261.

二级参考文献21

  • 1Rosenfeld A. The fuzzy geometry of image subsets. Pattern Recognition Letters, 1984,2(5):311-317.
  • 2Udupa JK, Samarasekera S. Fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation. Graphical Models and Image Processing, 1996,58(3):246-261.
  • 3Saha PK, Udupa JK, Odhner D. Scale-Based fuzzy connected image segmentation: Theory, algorithms, and validation. Computer Vision and Image Understanding, 2000,77(9):145-174.
  • 4Udupa JK, Saha PK, Lotufo RA. Relative fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(11):1485-1500.
  • 5He H, Chert YQ. Fuzzy aggregated connectedness for image segmentation. Pattern Recognition, 2001,34(12):2565-2568.
  • 6Lin Y, Tian J, He HG. Image segmentation via fuzzy object extraction and edge detection and its medical application. Journal of X-Ray Science and Technology, 2002,10(1-2):95-106,.
  • 7Sahoo PK, Soltani S, Wong AKC, Chen YC. A survey of thresholding techniques. Computer Vision Graphical Image Process, 1988,41 (2):233-260.
  • 8Kundu A, Mitra SK. A new algorithm for image edge extraction using a statistical classifier approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 1987,9(4):569-577.
  • 9Adams R, Bischof L. Seeded region growing. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994,16(6):641-647.
  • 10Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991,13(6):583-598.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部