期刊文献+

一种结合LPA半监督学习的排序学习算法 被引量:3

A RANKING LEARNING ALGORITHM COMBINING SEMI-SUPERVISED LEARNING OF LPA
下载PDF
导出
摘要 针对有监督排序学习所需训练集的大量标注数据不易获得的情况,引入基于图的标签传播半监督学习。利用有限的已标记数据和大量未标记数据来完成训练数据的自动标注工作,解决大量训练数据集标注工作耗时耗力的难题。首先以训练数据为节点建立εNN图模型实现标签传播算法进行训练数据的自动标注,再基于得到的训练集使用Ranking SVM实现排序学习,在OHSUMED数据集上衡量该方法在MAP和NDCG@n评价准则下的性能。实验结果表明,该方法的性能优于普通pointwise排序学习方法,略低于普通pairwise排序学习方法,能够在达到可用性要求的前提下节省接近60%的训练集标注工作量。 In order to solve the problem that the large amount of labelled data in regard to training set needed by supervised ranking learning is hard to obtain, this paper introduces the graph-based label propagation semi-supervised learning and uses limited labelled data and a great deal of unlabelled data to complete the automatic labelling work of training data, this solves the problem of time-consuming and labourconsuming in labelling work for massive training data sets. In this paper we first build eNN graphs model with training data as nodes to achieve the automatic training data labelling by label propagation algorithm, then based on the derived training set we use rankingSVM to implement ranking learning, on ONSUMED data set we estimate the performance of the proposed method with evaluation criteria of MAP and NDCG@ n. Experimental result demonstrates that the performance of the proposed method is better than common pointwise ranking learning method, but a little poorer than pairwise ranking learning method, it can save about 60% workload of training set labelling under the premise of satisfying the demand of availability.
出处 《计算机应用与软件》 CSCD 2016年第1期286-290,共5页 Computer Applications and Software
关键词 排序学习 LPA标签传播算法 图的半监督学习 排序支持向量机 Ranking learning LPA (label propagation algorithm) Graph based semi-supervised learning RankingSVM
  • 相关文献

参考文献15

  • 1Zhu X.Semi-Supervised Learning Literature Survey[J].Computer Science,2006,37(1):63-77.
  • 2张俊丽,常艳丽,师文.标签传播算法理论及其应用研究综述[J].计算机应用研究,2013,30(1):21-25. 被引量:42
  • 3Cossock D,Zhang T.Subset ranking using regression[C]//The 19th Annual Conference on Learning Theory(COLT’2006),Carnegie Mellon University,Pittsburgh,Pennsylvania,2006:605-619.
  • 4Hüllermeier E,Fürnkranz J,Cheng W,et al.Label Ranking by Learning Pairwise Preferences[J].Artificial Intelligence,2008,172(1617):1897-1916.
  • 5Liu T Y.Learning to Rank for Information Retrieval[J].Foundations and Trends in Information Retrieval,2009,3(3):225-331.
  • 6张俊林.这就是搜索引擎[M].北京:电子工业出版社,2012:1-320.
  • 7Joachims T.Training linear SVMs in linear time[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,ACM,2006:217-226.
  • 8Joachims T,Finley T,Yu C N J.Cutting-plane training of structural SVMs[J].Machine Learning,2009,77(1):27-59.
  • 9Zhu Xiaojin,Ghahramani Z.Learning from labeled and unlabeled data with label propagation,CMU-CALD-02-107[R].Pitts-burghers:Carnegie Mellon University,2002.
  • 10Niu Z Y,Ji D H.Word Sense Disambiguation Using Label Propagation Based Semi-Supervised Learning[C]//ACL’05 Proceedings of the43rd Annual Meeting on Association for Computational Linguistics,2005:395-402.

二级参考文献33

  • 1ZHU Xiao-jin, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions [ C ]//Proc of the 20th International Conference on Machine Learning. 2003:328- 335.
  • 2OLIVIER C, BERNIARD S. Semi-supervised learning [ M ]. Cam- bridge: MIT Press,2006:l-53.
  • 3ZHU Xiao-jin. GHAHRAMANI Z. Learning from labe, lcd and unla- beled data with label propagation, CMU-CALD- 02- 107 [ R ]. Pitts, burghers : Carnegie Mellon University, 2002.
  • 4YANG I.,ing-peng, J! Dong-hong, NIE Yu. Information retrieval using label propagation based ranking C ]//Proc Of the 6th NTCIR Work- shop. 2007 : 140-144.
  • 5KIM S M, PANTEL P, DUAN Lei,et al. Improving Web page classi- fication by label propagation over click graphs [ C ]//Proc of the 18th ACM Conference on Information and Knowledge Management. New York : ACM Press,20( : 1077-1086.
  • 6BLAIR-GOLDENSOHN, HANNAN K, McDONALD R, et al. BuiId- ing a sentiment summarizer for local service reviews [ EB/OL ] : (2008-04-22) [ 2012, 05-221. http..//www, dejanseo, com. au/re- seareh/google134368, pd/'.
  • 7RAO D, RAVICHANDRAN D. Semi-supervised polarity lexicon in- duction[ C]//Proc of the 12th Conference of the European Chapter of the ACL. 2009 : 675-682.
  • 8SPERIOSU M, SUDAN N, UPADHYAY S, et al. Twitter polarity clas- sification with label propagation over lexieal links and the follower graph[C]//Proc of the Ist Workshop on UnsUpervised Learning in NLP. 2011: 53-63. ;.
  • 9NIU Zkeng-yu, JI Dong-hong,TAN C L. Word sense disambiguation using label propagation based semi-supervised learning[ C ]//Proc of the 4-3rd Annual Meeting on Association for Computational Linguis- tics. 2005 : 238-241.
  • 10LANSDALL-WELFARE T, FLAOUNAS L, CRISTIANINI N. Scalable corpus annotation by graph construction and label propagation [ C ]// Proc of the 1 st International Conference on P-attem Recognition Appli- cations and Methods. 2012: 25-34.

共引文献46

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部