期刊文献+

一种自适应参数的切换回归聚类算法

A SWITCHING REGRESSION CLUSTERING ALGORITHM WITH ADAPTIVE PARAMETERS
下载PDF
导出
摘要 自模糊c回归模型(FCRM)聚类算法提出以来,其在收敛速度和鲁棒性等方面的改进一直是研究的热点。为此,M.S.Yang等提出模糊c回归模型α(FCRMα)算法,该算法引入参数α,对FCRM算法进行了快速迭代,提高了算法的鲁棒性。然而该算法存在参数α选值的问题。针对这种情况,基于相似关系理论提出一种自适应的α参数取值方法,得到了自适应迭代过程的SAFCRM算法。多个实验表明,相对于FCRMα算法,SAFCRM算法具有更强的鲁棒性,收敛速度更快,得到的回归效果也更好。 Since the presentation of fuzzy c-regression models (FCRM) clustering algorithm, the improvement on its convergence speed and robustness has been the focus of research. For this reason, M.S. Yang proposed FCRMα algorithm. In this algorithm, parameter α is introduced to expedite the iterative operation of FCRM algorithm and improves the robustness of it. However, the algorithm has the problem of parameter α selection. To solve the problem, we present an adaptive parameter α value assignation method based on similarity relation theory, and derive the SAFCRM algorithm for adaptive iteration process. Several experiments show that the SAFCRM algorithm has stronger robustness, faster convergence speed and better regression results than FCRMα algorithm.
出处 《计算机应用与软件》 CSCD 2016年第1期330-333,共4页 Computer Applications and Software
基金 浙江省温州市科技计划项目(G20130031) 浙江省高职高专院校专业领军项目(lj2013146) 温州市公益性科技计划项目(G20140049)
关键词 切换回归 模糊聚类 参数优化 自适应 Switching regression Fuzzy clustering Parameter optimisation Adaptive
  • 相关文献

参考文献13

  • 1Richard E Quandt.The estimation of the parameters of a linear regression system obeying two separate regimes[J].Journal of the American Statistical Association,1958,53(284):873-880.
  • 2Richard E Quandt.Tests of the hypothesis that a linear regression system obeys two separate regimes[J].Journal of the American Statistical Association,1960,55(290):324-330.
  • 3Chow G C.Tests of equality between sets of coefficients in two linear regressions[J].Journal of the Econometric Society,1960,28(3):591-605.
  • 4Hathaway R J,Bezdek J C.Switching regression models and fuzzy clustering[J].Transactions on Fuzzy Systems,1993,1(3):195-204.
  • 5王士同,江海峰,陆宏钧.关于切换回归的集成模糊聚类算法GFC(英文)[J].软件学报,2002,13(10):1905-1914. 被引量:6
  • 6杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报,2009,4(6):497-501. 被引量:1
  • 7Wu K L,Yang M S,Hsiehb J N.Mountain c-regressions method[J].Pattern Recognition,2010,43(1):86-98.
  • 8Yang M S,Wu K L,Hsieh J N,et al.Alpha-cut implemented fuzzy clustering algorithms and switching regressions[J].Systems,Man,and Cybernetics,2008,38(3):588-603.
  • 9Zadeh L A.Similarity Relations and Fuzzy Orderings[J].Information Sciences,1971,3(2):177-200.
  • 10Yang M S,Wu K L.A similarity-based robust clustering method[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(4):434-448.

二级参考文献27

  • 1沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 2HAMERMESH D S. Wage bargains, threshold effects, and the Phillips curve [ J ]. Quarterly Journal of Economics, 1970, 84(3) :501-517.
  • 3QUANDT R E. A new approach to estimating switching regressions[J]. J Amer Statist Ass, 1972, 67(338) : 306-310.
  • 4QUANDT R E, RAMSEY J B. Estimating mixtures of normal distributions and switching regressions [ J ]. J Amer Statist Ass, 1978, 73: 730-752.
  • 5HOSMER D W. Maximum likelihood estimates of the parameters of a mixture of two regression lines[ J ]. Communications in Statistics, 1974, 3(10) :995-1005.
  • 6BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981:88- 94.
  • 7HATHAWAY R J, BEZDEK J C. Switching regression models and fuzzy elustering[J]. IEEE Trans on Fuzzy Systems, 1993, 1(3):195-204.
  • 8OHTA T, YAMAKAWA A, ICHIHASHI H, et al. Projection pursuit switching regression [ C ]//Proc of 5th International Conference on Sofl Computing. Iizuka, Japan, 1998: 775 -778.
  • 9OHTA T, YAMAKAWA A, ICHIHASHI H,et al. Projection pursuit switching regression for analysis of psychological feelings[ J]. Journal of Biomedical Soft Computing and Human Sciences, 1998, 4( 1 ) : 15-21.
  • 10WANG Shitong, JIANG Haifeng, LU Hongjun. A new integrated clustering algorithm GFC and switching regression [ J]. International Journal of Pattern Recognition and Artificial Intelligence, 2002, 16(4) :433-446.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部