期刊文献+

改进的菌群趋药性算法优化PID控制参数

Improved Bacterial Colony Chemotaxis Algorithm for the Optimization of PID Control Parameters
下载PDF
导出
摘要 提出改进的细菌群体趋药性算法(BCC)来优化PID参数.针对BCC算法在多维变量搜索时,耗时且难于收敛到最优值,提出2种改变,一为变步长搜索,二为每一个细菌变量设定活动区域,移动后如超出设定区域,将采用区域内的固定值取代或精英取代两种方式优化,通过PID控制参数进行仿真实验,表明改进后的算法在参数的精度、稳定性和优化时间上都有很好的表现. An improved bacterial colony chemotaxis algorithm( BCC) was proposed to optimize the parameters of PID control. When the multi-dimensional variables are optimized,the BCC algorithm is time consuming and difficult to converge. Two improved measures were put forward. The first way is to use the variable step search; the second way is to set the active area for each bacterial variable. If the new position is out of the set area,the location of the bacteria will be replaced by a fixed value or the elite value in the region. Through the PID control parameters,the simulation experiments show that the improved algorithm has a good performance in the accuracy of the parameters,the stability of the parameters and the optimization time.
出处 《佳木斯大学学报(自然科学版)》 CAS 2015年第6期877-879,共3页 Journal of Jiamusi University:Natural Science Edition
基金 中国博士后科学基金(2014M560508) 安徽省高等学校省级自然科学研究项目(KJ2012A269) 安徽省自然科学基金项目(1208085MG121) 教育部人文社会科学研究青年基金(11YJC630074) 铜陵学院院级科研项目(2014tlxyxs31 2015tlxy31 2015tlxy34)资助
关键词 PID控制器 细菌群体趋药性算法 变步长搜索 精英取代 PID controller bacterial colony chemotaxis algorithm variable step search elite replacement
  • 相关文献

参考文献2

二级参考文献19

  • 1万佑红,李新华.用遗传算法实现PID参数整定[J].自动化技术与应用,2004,23(7):7-8. 被引量:18
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3彭沛夫,林亚平,张桂芳,彭理莉.具有杂交、变异因子的自适应蚁群算法最优PID参数[J].计算机工程与应用,2006,42(6):88-91. 被引量:3
  • 4Noor H A,Mahanijah M K,Faieza H Y.Application of PID con-troller in controlling refrigerator temperature[C]//5th Internation-al Colloquium on Signal Processing & Its Applications(CSPA), 2009: 378-384.
  • 5Khodabakhshian A, Hooshmand R.A new PID controller design for automatic generation control of hydropower systems[J].Elec-trical Power and Energy Systems, 2010,32 : 375-382.
  • 6Kim T H,Maruta 1,Sugie T.Robust PID controller tuning based on the constrained particle swarm optimization[J].Automatica, 2008, 44: 1104-1110.
  • 7Chanchal D, Rajani K M.An improved auto-tuning scheme for PID controllers[J].ISA Transactions, 2008,48: 396-409.
  • 8Kim D H.Hybrid GA-BF based intelligent PID controller tuning for AVR system[J].Applied Soft Computing, 2010,11 : 11-22.
  • 9Kevin M EBiomimicry of bacterial foraging for distributed opti-mization and control[J].IEEE Control Systems Magazine, 2002, 22: 52-67.
  • 10Chen H N,Zhu Y L,Hu K Y.Self-adaptation in bacterial forag-ing optimization algorithm[C]//Proceedings of 3rd International Conference on Intelligent System and Knowledge Engineering, 2008 : 1026-1031.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部