摘要
变压器故障诊断的发展与信息技术、人工智能技术等密切相关.神经网络及其优化算法在变压器故障诊断中受到广泛的应用.网络结构的设计和学习算法的优化关系到故障诊断的准确性和实时性.研究发现,数学理论与神经网络的融合以及量子神经计算有助于故障诊断能力的提高,已成为神经网络的发展趋势.
The development of transformer fault diagnosis relates to information technology and artificial intelligence tech- nology closely. Neural network and its optimization algorithm are widely used in transformer fault diagnosis. Both network structure and optimization of algorithm relate to accuracy and real time of fault diagnosis. The study found that the integra- tion of mathematical theory and neural networks and quantum neural computation helps to improve troubleshooting capa- bilities, and it has become a trend of neural networks.
出处
《宜宾学院学报》
2015年第12期10-14,共5页
Journal of Yibin University
基金
四川省教育厅重点项目(15ZA0397)
宜宾职业技术学院科研项目(ybzysc14-36)
关键词
神经网络
故障诊断
变压器
neural networks
fault diagnosis
transformer