期刊文献+

Banach空间中非扩张映像和渐进非扩张映像的分裂公共不动点

The Split Common Fixed Point Problem of Nonexpansive Mapping and Asymptotically Nonexpansive Mapping in Banach Spaces
下载PDF
导出
摘要 在两个Banach空间框架下介绍了非扩张映像和渐进非扩张映像的分裂公共不动点问题.在适当的条件下构造了迭代序列,使该序列收敛于非扩张映像和渐进非扩张映像的分裂公共不动点. The split common fixed point problem of nonexpansive mapping and asymptotically nonexpansive mapping was introduced in the setting of two Banach spaces. Under appropriate conditions, the iterative sequence was constructed to converge on the split common fixed point of nonexpansive mapping and asymptotically nonexpansive mapping.
作者 唐金芳 董建
出处 《宜宾学院学报》 2015年第12期70-73,共4页 Journal of Yibin University
基金 四川省科技厅科研项目(2015JY0165) 宜宾学院科研项目(2013YY06)
关键词 BANACH空间 非扩张映像 强收敛定理 分裂公共不动点 Banach spaces nonexpansive mappings strong convergent theorem split common fixed point
  • 相关文献

参考文献11

  • 1CENSOR Y, ELFVING T. A muhiprojection algorithm using Breg- man projection in a product splace[J]. Numer Algorithms, 1994(8): 221-239.
  • 2YANG Q. The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Probl, 2004, 20(4): 1261-1266.
  • 3ZHAO J, YANG Q. Several solution methods for the split feasibility problem[J]. Inverse Probl, 2005, 21(5): 1791-1799.
  • 4QU B, XIU N. A note on the CQ algorithm for the split feasibility problem[J]. Inverse Probl, 2005, 21(5): 1655-1665.
  • 5XU H K. A variable Krasnosel' skii-Mann algorithm and the multi- ple- set split feasibility problem[J]. Inverse Probl, 2006, 22(6): 2021-2034.
  • 6XU, H K. Iterative methods for the split feasibility problem in infi- nite- dimensional Hilbert spaces[J]. Inverse Probl, 2010, 26(10): 105018.
  • 7MOUDAFI A. A note on the split common fixed point problem for quasi-nonexpansive operators[J]. Nonlinear Anal, 2001(74): 4083- 4087.
  • 8CHANG S S, WANG L, TANG Y K, et al. The split common fixed point problem for total asymptotically strictly pseudocontractive mappings[J]. Journal of Applied Mathematics, 2012:385638. doi: 10.1155/2012/385638.
  • 9CUI H H, WANG F H. Iterative methods for the split common fixed point problem in Hilbert spaces[J]. Fixed Point Theory and Applica- tions, 2014:78. doi: 10.1186/1687-1812-2014-78.
  • 10XU H K. Inequalities in Banaeh spaces with applications[J]. Non- linear Analysis: Theory, Methods and Applications, 1991(16): 1127-1138.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部